10.1002/anie.201909852
Angewandte Chemie International Edition
COMMUNICATION
5203–5208; b) G. Li, H. Liu, Y. Wang, S. Zhang, S. Lai, L. Tang, J.
Zhao, Z. Tang, Chem. Comm. 2016, 52, 2304–2306; c) C. D.-T.
Nielsen, A. J. P. White, D. Sale, J. Bures, A. C. Spivey, ChemRxiv
preprint, 2019, DOI 10.26434/chemrxiv.8052623.v1.
J.C.L.W. gratefully acknowledges the Alexander von Humboldt
Foundation for a Theodor Heuss fellowship (2018–2019). M.O.
is indebted to the Einstein Foundation Berlin for an endowed
professorship.
[11] For an example of catalytic protonation of alkenes for C(sp3)–C(sp3)
bond and tertiary carbon-center formation, see: B. Das, M. Krishnaiah,
K. Laxminarayana, K. Damodar, D. N. Kumar, Chem. Lett. 2008, 38,
42–43.
Conflict of interest
[12] For overviews of early work, see: a) S. Keess, M. Oestreich, Chem. Sci.
2017, 8, 4688–4695; b) M. Oestreich, Angew. Chem. Int. Ed. 2016, 55,
494–499; Angew. Chem. 2016, 128, 504‒509.
The authors declare no conflict of interest.
[13] For key publications, see: a) A. Simonneau, M. Oestreich, Angew.
Chem. Int. Ed. 2013, 52, 11905–11907; Angew. Chem. 2013, 125,
12121‒12124; b) A. Simonneau, M. Oestreich, Nat. Chem. 2015, 7,
816–822; c) I. Chatterjee, Z.-W. Qu, S. Grimme, M. Oestreich, Angew.
Chem. Int. Ed. 2015, 54, 12158–12162; Angew. Chem. 2015, 127,
12326‒12330; d) W. Chen, J. C. L. Walker, M. Oestreich, J. Am. Chem.
Soc. 2019, 141, 1135–1140.
Keywords: boron
• carbocations • carbon–carbon bond
formation • transfer processes • Lewis acids
[1]
[2]
D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W. Thomas, D.
M. Wilson, A. Wood, Nat. Chem. 2018, 10, 383–394.
For relevant reviews, see: a) S. P. Pitre, N. A. Weires, L. E. Overman, J.
Am. Chem. Soc. 2019, 141, 2800–2813; b) J. Choi, G. C. Fu, Science
2017, 356, eaaf7230; c) J. Feng, M. Holmes, M. J. Krische, Chem. Rev.
2017, 117, 12564–12580; d) K. W. Quasdorf, L. E. Overman, Nature
2014, 516, 181–191.
[14] S. Keess, M. Oestreich, Chem. Eur. J. 2017, 23, 5925–5928.
[15] P. Orecchia, W. Yuan, M. Oestreich, Angew. Chem. Int. Ed. 2019, 58,
3579–3583; Angew. Chem. 2019, 131, 3617–3621.
[16] For general reviews of chemistry mediated by B(C6F5)3 and related
Lewis acids, see: a) J. R. Lawson, R. L. Melen, Inorg. Chem. 2017, 56,
8627–8643; b) M. Oestreich, J. Hermeke, J. Mohr, Chem. Soc. Rev.
2015, 44, 2202–2220; c) G. Erker, Dalton Trans. 2005, 1883–1890; d)
W. E. Piers, Adv. Organomet. Chem. 2004, 52, 1–76.
[3]
For recent examples of the formation of quaternary carbon centers by
C(sp3)–C(sp3) bond-forming reactions under transition-metal catalysis,
see: a) Ref. [2b] and cited references; b) T. Qin, L. R. Malins, J. T.
Edwards, R. R. Merchant, A. J. E. Novak, J. Z. Zhong, R. B. Mills, M.
Yan, C. Yuan, M. D. Eastgate, P. S. Baran, Angew. Chem. Int. Ed.
2017, 56, 260–265; Angew. Chem. 2017, 129, 266–271; c) H. Chen, X.
Jia, Y. Yu, Q. Qian, H. Gong, Angew. Chem. Int Ed. 2017, 56, 13103–
13106; Angew. Chem. 2017, 129, 13283–13286; d) Z. Wang, H. Yin, G.
C. Fu, Nature 2018, 563, 379–383; e) Y. Ye, H. Chen, J. L. Sessler, H.
Gong, J. Am. Chem. Soc. 2019, 141, 820–824; f) S. A. Green, T. R.
Huffman, R. O. McCourt, V. van der Puyl, R. A. Shenvi, J. Am. Chem.
Soc. 2019, 141, 7709–7714.
[17] For
a recent example of transition-metal-catalyzed Markovnikov
hydroalkylation of alkenes, see Ref. [3f].
[18] G. Ménard, D. W. Stephan, Angew. Chem. Int. Ed. 2012, 51, 4409–
4412; Angew. Chem. 2012, 124, 4485–4488.
[19] For examples of the use of allylborate-type species in conjunction with
transition-metal catalysis for quaternary carbon center formation, see:
a) P. Zhang, H. Le, R. E. Kyne, J. P. Morken, J. Am. Chem. Soc. 2011,
133, 9716–9719; b) J. S. Marcum, T. N. Cervarich, R. S. Manan, C. C.
Roberts, S. J. Meek, ACS Catal. 2019, 9, 5881–5889.
[4]
For recent examples of the formation of arylated quaternary carbon
centers by C(sp2)–C(sp3) bond formation under transition-metal
catalysis, see: a) A. Joshi-Pangu, C.-Y. Wang, M. R. Biscoe, J. Am.
Chem. Soc. 2011, 133, 8478–8481; b) C. Lohre, T. Dröge, C. Wang, F.
Glorius, Chem. Eur. J. 2011, 17, 6052–6055; c) S. L. Zultanski, G. C.
Fu, J. Am. Chem. Soc. 2014, 135, 624–627; d) X. Wang, S. Wang, W.
Xue, H. Gong, J. Am. Chem. Soc. 2015, 137, 11562–11565; e) Q. Zhou,
K. M. Cobb, T. Tan, M. P. Watson, J. Am. Chem. Soc. 2016, 138,
12057–12060; f) D. N. Primer, G. A. Molander, J. Am. Chem. Soc. 2017,
139, 9847–9850; g) P. Liu, C. Chen, X. Cong, J. Tang, X. Zeng, Nat.
Commun. 2018, 9, 4637–4644; h) S. A. Green, S. Vásquez-Céspedes,
R. A. Shenvi, J. Am. Chem. Soc. 2018, 140, 11317–11324; i) T.-G.
Chen, H. Zhang, P. K. Mykhailiuk, R. R. Merchant, C. A. Smith, T. Qin,
P. S. Baran, Angew. Chem. Int. Ed. 2019, 58, 2454–2458; Angew.
Chem. 2019, 131, 2476–2480.
[20] For the preparation and reactivity of allylboron reagents using B(C6F5)3,
see: a) M. M. Hansmann, R. L. Melen, F. Rominger, A. S. K. Hashmi, D.
W. Stephan, J. Am. Chem. Soc. 2014, 136, 777–782; b) L. C. Wilkins, J.
R. Lawson, P. Wieneke, F. Rominger, A. S. K. Hashmi, M. M.
Hansmann, R. L. Melen, Chem. Eur. J. 2016, 22, 14618–14624.
[21] The catalytic hydroallylation of alkenes with nucleophilic allyl reagents
under transition-metal-catalyzed conditions has previously been
reported. a) Y. Huang, C. Ma, Y. X. Lee, R.-Z. Huang, Y. Zhao, Angew.
Chem. Int. Ed. 2015, 54, 13696–13700; Angew. Chem. 2015, 127,
13900–13904; b) J. S. Marcum, T. N. Cervarich, R. S. Manan, C. C:
Roberts, S. J. Meek. ACS Catal. 2019, 9, 5881–5889.
[22] The catalytic hydroallylation of alkenes under radical conditions has
previously been reported. a) A.-P. Schaffner, P. Renaud, Angew. Chem.
Int. Ed. 2003, 42, 2658–2660; Angew. Chem. 2003, 115, 2762–2764; b)
J. Qi, J. Zheng, S. Cui, Org. Lett. 2018, 20, 1355–1358.
[5]
For examples, see: a) Ref. [2c]; b) L. Chen, X.-P. Yin, C.-H. Wang, J.
Zhou, Org. Biomol. Chem. 2014, 12, 6033–6048; c) A. Gualandi, G.
Rodeghiero, P. G. Cozzi, Asian J. Org. Chem. 2018, 7, 1957–1981.
A. E. Wendlandt, P. Vangal, E. N. Jacobsen, Nature 2018, 556, 447–
451.
[23] For examples of metal-free allylation of carbenium ions generated from
tertiary alcohol-type species, see: a) J. A. Cella, J. Org. Chem. 1982,
47, 2125–2130; b) M. Masahiro, K. Takashi, M, Teruaki, Chem. Lett.
1987, 1167–1170; c) G. Kaur, M. Kaushik, S. Trehan, Tetrahedron Lett.
1997, 38, 2521–2524; d) M. Rubin, V. Gevorgyan, Org. Lett. 2001, 3,
2705–2707; e) T. Ishikawa, M. Okano, T. Aikawa, S. Saito, J. Org.
Chem. 2001, 66, 4635–4642; f) S.-S. Weng, K.-Y. Hsieh, Z.-J. Zeng,
Tetrahedron 2015, 71, 2549–2554; g) T. Lebleu, J.-F. Paquin,
Tetrahedron 2017, 58, 442–444.
[6]
[7]
For reviews of carbocation chemistry, see: a) R. R. Naredla, D. A.
Klumpp, Chem. Rev. 2013, 113, 6905–6948; b) Carbocation Chemistry
(Eds.: G. A. Olah, G. K. Surya Prakash), Wiley, Hoboken, 2004.
[8]
[9]
For a study on the reactivity of carbenium ions with unsaturated
hydrocarbons, see: H. Mayr, G. Lang, A. R. Ofial, J. Am. Chem. Soc.
2002, 124, 4076–4083.
[24] This was previously observed for other cyclohexa-1,4-diene-based
surrogates. See Refs. [13d,15].
M. Braun, W. Kotter, Angew. Chem. Int. Ed. 2004, 43, 514–517; Angew.
[25] The cyclization of systems similar to 15a to indanes under both
Brønsted- and Lewis-acid catalysis has previously been reported. For
selected examples, see: a) W.-F. Chen, H.-Y. Lin, S. A. Dai, Org. Lett.
2004, 6, 2341–2343; b) C. Peppe, E. S. Lang, F. M. de Andrade, L. B.
de Castro, Synlett 2004, 1723–1726; c) S. A. Bonderoff, F. G. West, M.
Chem. 2004, 116, 520–523.
[10] For examples of catalytic protonation of alkenes for C(sp2)–C(sp3) bond
and quaternary carbon center formation, see: a) T. P. Pathak, J. G.
Osiak, R. M. Vaden, B. E. Welm, M. S. Sigman, Tetrahedron 2012, 68,
This article is protected by copyright. All rights reserved.