K. V. Sashidhara et al. / Tetrahedron Letters 53 (2012) 3281–3283
3283
at d 11.04 and 9.58 belonging to the hydroxyl and latter to a free
References and notes
aldehyde, respectively. The 13C NMR spectrum in addition to other
signals, showed diagnostic signal at d 196.9 (CHO) revealed that
the product had aldehydic group. In the HMBC spectrum, C-2 (d
158.0) gave correlations with protons present at d 3.05, 7.23,
7.73, 11.04, and also at d 9.58; this was only possible if the free
aldehyde is at ortho position. This indicated that the condensation
involved the aldehyde at para position (Scheme 1). Through HMBC
we investigated further and found that proton at C-14 (d 6.42) gave
correlation with C-4 (d 130.8), and C-6 (134.3). Finally, aldehydic
proton (d 9.58) gave correlation with C-1 (d 120.5), C-2 (d 158.0),
and C-6 (d 134.3). Thus, the final analysis with all the spectral data
led to structure as 3a. Selected HMBC correlations of compound 3a
are shown in Figure 1.
With an efficient route to the regioselective synthesis of xanth-
enes in hand, its diversification was undertaken to afford various
analogs in a straightforward way in excellent yields (Scheme 2).
Thus, subsequent diversification on 3a was accomplished by apply-
ing the Knoevenagel condensation, catalyzed by piperidine, result-
ing in the formation of its coumarin derivatives (4a–c).
Alternatively, compound 3a on Claisen–Schmidt reaction23 with
different acetophenones in refluxing ethanol, in the presence of a
10% KOH furnished chalcones (5a–d). In all the chalcones synthe-
sized the trans double bond (on the basis of coupling constant)
was obtained exclusively. The low yields of chalcones obtained
may be due to the combined effects of steric hindrance and the
low reactivity of ortho-aldehyde which is involved in hydrogen
bonding with the adjacent hydroxyl group. Furthermore, the com-
pound 3a on reaction with different amines in ethanol in the pres-
ence of catalytic amount of PTSA cleanly furnished its Schiff base
(6a–c) derivatives that existed in keto-enamine form in high
yields.24 The formation of 3-arylcoumarin (7) was demonstrated
by the reaction of 3a with 4-methoxyphenylacetic acid in the pres-
ence of cyanuric chloride in excellent yield.21b Similarly, dioxocine
(8) was derived by reaction of 3a with epichlorohydrin using tri-
ethylamine as catalyst.21d All compounds were characterized using
1H NMR, 13C NMR, 2D NMR, mass spectrometry, and IR spectros-
copy. The purity of these compounds was ascertained by TLC and
spectral analysis25 (please refer to Supplementary data).
1. Donald, J. R.; Martin, S. F. Org. Lett. 2011, 13, 852–855.
2. Bhandari, M. R.; Yousufuddin, M.; Lovely, C. J. Org. Lett. 2011, 13, 1382–1385.
3. Pepe, A.; Pamment, M.; Georg, G. I.; Malhotra, S. V. J. Org. Chem. 2011, 76, 3527–
3530.
4. An, H.; Eum, S. J.; Koh, M.; Lee, S. K.; Park, S. B. J. Org. Chem. 2008, 73, 1752–
1761.
5. Marcaurelle, L. A.; Johannes, C.; Yohannes, D.; Tillotson, B. P.; Mann, D. Bioorg.
Med. Chem. Lett. 2009, 19, 2500–2503.
6. Manvar, A.; Bavishi, A.; Radadiya, A.; Patel, J.; Vora, V.; Dodia, N.; Rawal, K.;
Shah, A. Bioorg. Med. Chem. Lett. 2011, 21, 4728–4731.
7. Adcock, J.; Gibson, C. L.; Huggan, J. K.; Suckling, C. J. Tetrahedron 2011, 67,
3226–3237.
8. Sen, S.; Kamma, S. R.; Potti, V. R.; Murthy, Y. L. N.; Chaudhary, A. B. Tetrahedron
Lett. 2011, 52, 5585–5588.
9. Kang, F. A.; Sui, Z. Tetrahedron Lett. 2011, 52, 4204–4206.
10. Lakontseva, E.; Krasavin, M. Tetrahedron Lett. 2010, 51, 4095–4099.
11. Nefzi, A.; Arutyunyan, S. Tetrahedron Lett. 2010, 51, 4797–4800.
12. Lambert, R. W.; Martin, J. A.; Merrett, J. H.; Parkes, K. E. B.; Thomas, G. J. PCT Int.
Appl. WO9706178, 1997.
13. Hideo, T. Jpn. Tokkyo Koho JP56005480, 1981; Chem. Abstr. 1981, 95, 80922b.
14. Poupelin, J. P.; Saint-Ruf, G.; Foussard-Blanpin, O.; Narcisse, G.; Uehida-Ernouf,
G.; Lacroix, R. Eur. J. Med. Chem. 1978, 13, 67–71.
15. Ion, R. M.; Albulescu, C.; Sirkecioglu, O.; Talinli, N. Intenet. Photochem.
Photobiol. 2000.
16. (a) Saint-Ruf, G.; De, A.; Hieu, H. T. Bull. Chim. Ther. 1972, 7, 83–86; (b) Saint-
Ruf, G.; Hieu, H. T.; Poupelin, J. P. Naturwissenschaften 1975, 62, 584–585.
17. (a) Menchen, S. M.; Benson, S. C.; Lam, J. Y. L.; Zhen W.; Sun, D.; Rosenblum, B.
B.; Khan, S. H.; Taing, M. U.S. Patent 6, 583, 2003, 168.; (b) Banerjee, A.;
Mukherjee, A. K. Stain Technol. 1981, 56, 83–86.
18. (a) Bekaert, A.; Andrieux, J.; Plat, M. Tetrahedron Lett. 1992, 33, 2805–2806; (b)
Sarma, R. J.; Baruah, J. B. Dyes Pigm. 2005, 64, 91–92; (c) Buehler, C. A.; Cooper,
D. E.; Scrudder, E. O. J. Org. Chem. 1943, 8, 316–319.
19. Bhattacharya, A. K.; Rana, K. C.; Mujahid, M.; Sehar, Irum; Saxena, A. K. Bioorg.
Med. Chem. Lett. 2009, 19, 5590–5593.
20. Giri, R.; Goodell, J. R.; Xing, C.; Benoit, A.; Kaur, H.; Hiasa, H.; Ferguson, D. M.
Bioorg. Med. Chem. 2010, 18, 1456–1463.
21. (a) Sashidhara, K. V.; Kumar, A.; Agarwal, S.; Kumar, M.; Kumar, B.; Sridhar, B.
Adv. Synth. Catal. 2012, 354, 1129–1140; (b) Sashidhara, K. V.; Palnati, G. R.;
Avula, S. R.; Kumar, A. Synlett 2012, 23, 611–621; (c) Sashidhara, K. V.; Kumar,
A.; Rao, K. B.; Kushwaha, V.; Saxena, K.; Murthy, P. K. Bioorg. Med. Chem. Lett.
2012, 22, 1527–1532; (d) Sashidhara, K. V.; Kumar, A.; Rao, K. B. Tetrahedron
Lett. 2011, 52, 5659–5663; (e) Sashidhara, K. V.; Kumar, A.; Kumar, M.; Singh,
S.; Jain, M.; Dikshit, M. Bioorg. Med. Chem. Lett. 2011, 21, 7034–7040; (f)
Sashidhara, K. V.; Kumar, A.; Chatterjee, M.; Rao, K. B.; Singh, S.; Verma, A. K.;
Palit, G. Bioorg. Med. Chem. Lett. 2011, 21, 1937–1941; (g) Sashidhara, K. V.;
Kumar, A.; Kumar, M.; Sonkar, R.; Bhatia, G.; Khanna, A. K. Bioorg. Med. Chem.
Lett. 2010, 20, 4248–4251; (h) Sashidhara, K. V.; Rosaiah, J. N.; Kumar, A.;
Bhatia, G.; Khanna, A. K. Bioorg. Med. Chem. Lett. 2010, 20, 3065–3069; (i)
Sashidhara, K. V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Bioorg. Med.
Chem. Lett. 2010, 20, 6504–6507; (j) Sashidhara, K. V.; Kumar, A.; Kumar, M.;
Sarkar, J.; Sinha, S. Bioorg. Med. Chem. Lett. 2010, 20, 7205–7211; (k) Sashidhara,
K. V.; Rosaiah, J. N.; Kumar, M.; Gara, R. K.; Nayak, L. V.; Srivastava, K.; Bid, H.
K.; Konwar, R. Bioorg. Med. Chem. Lett. 2010, 20, 7127–7131.
In summary, we describe a simple and efficient method for the
synthesis of regioselective xanthene and their further diversifica-
tion. The advantage of this method is the ease of modification of
each unit and their combination with another pharmacophore as
potential pharmacological agents. This transformation could be of
immense importance to medicinal chemists using appropriate
templates to generate an interesting library of substituted
xanthenes.
22. Pasha, M. A.; Jayashankara, V. P. Bioorg. Med. Chem. Lett. 2007, 17, 621–623.
23. Nielsen, S. F.; Christensen, S. B.; Cruciani, G.; Kharazmi, A.; Liljefors, T. J. Med.
Chem. 1998, 41, 4819–4832.
24. Sashidhara, K. V.; Rosaiah, J. N.; Narender, T. Tetrahedron Lett. 2007, 48, 1699–
1702.
25. Synthesis of 3-sec-butyl-5-(14H-dibenzo[a,j]xanthene-14-yl)-2-hydroxybenz
aldehyde (3a): 5-sec-butyl-4-hydroxyisonaphthaldehyde (2 g, 9.708 mmol)
and naphthalen-2-ol (2.796 g, 19.4 mmol) in the presence of iodine as
catalyst, was heated at 90–95 °C for 15–30 min. The reaction was monitored
by TLC to establish completion. The remaining I2 was removed by washing
with satd aq Na2S2O3. The mixture was then extracted by chloroform
(3 ꢁ 50 mL). The combined organic layers were dried on Na2SO4, filtered, and
concentrated to dryness under reduced pressure. The crude product was
purified over column chromatography (100–200 mesh) to furnish compound
3a. White solid, yield: 90%; mp 125–127 °C; IR (KBr): 3394, 3057, 1639,
Acknowledgements
Authors acknowledge the SAIF division for providing the spec-
troscopic and analytical data. We are also thankful to Dr. T.K. Cha-
kraborty (Director, CDRI) for his constant support and
encouragement. A.K. and R.P.D. are thankful to the CSIR, New Delhi,
India for financial support. This is the CSIR-CDRI communication
number 8230.
1046 cmꢀ1 1HNMR (CDCl3, 300 MHz): d 11.03 (s, 1H), 9.58 (s, 1H), 8.28 (d,
;
J = 8.4 Hz, 2H), 7.81–7.73 (m, 5H), 7.56–7.51 (m, 2H), 7.47–7.36 (m, 4H), 7.24–
7.21 (m, 1H), 6.40 (s, 1H), 3.09–2.97 (m, 1H), 1.67–1.49 (m, 2H), 1.14 (d,
J = 6.9 Hz, 3H), 0.73 (t, J = 7.4 Hz, 3H); 13C NMR (CDCl3, 75 MHz): d 196.9, 158.0,
148.8, 136.7, 135.3, 134.3, 131.4, 131.3, 130.8, 129.2, 129.1, 126.9, 124.5, 122.6,
122.5, 120.5, 118.1, 116.9, 37.4, 32.9, 29.3, 20.2, 11.9; ESI-MS (m/z): 459
(M+H)+. Anal. Calcd C32H26O3: C, 83.82; H, 5.72. Found C, 83.96; H, 5.57.
Supplementary data
Supplementary data (Spectral data of all the compounds) asso-
ciated with this article can be found, in the online version, at