The Journal of Organic Chemistry
Article
methanol (0.1% formic acid) in water (0.1% formic acid) with a flow
rate of 10.6 mL/min.
(13) Gante, J. Synthesis 1989, 405−413.
(14) Proulx, C.; Sabatino, D.; Hopewell, R.; Spiegel, J.; Garcia
Ramos, Y.; Lubell, W. D. Future Med. Chem. 2011, 3, 1139−1164.
(15) Gray, C. J.; Quibell, M.; Baggett, N.; Hammerle, T. Int. J. Pept.
Protein Res. 1992, 40, 351−362.
Competitive Solid-Phase Integrin Binding Assay. The in vitro
inhibition of integrin−extracellular matrix (ECM) protein binding was
measured in a solid-phase binding assay using soluble integrins and
coated ECM proteins, following previously described methods.59
Briefly, for the αvβ3-binding activity, flat-bottom 96-well plates were
coated at 4 °C overnight with vitronectin (1.0 μg/mL). After a
blocking step, soluble integrin αvβ3 (1.0 μg/mL) was next incubated
with a serial dilution of integrin inhibitors (10 to 0.0032 μM) for 1 h at
room temperature. Then, primary (CD51/CD61, 2.0 μg/mL) and
secondary antibodies (anti-mouse-horseradish peroxidase (HRP)
conjugate, 1.0 μg/mL) were applied each for 1 h at room temperature,
respectively. The detection of HRP was performed using a HRP
substrate (3.3.5.5′-tetramethylethylenediamine, TMB), adding 2 M
H2SO4 to stop the reaction. The absorbance of each well was recorded
at 450 nm with a POLARstar Galaxy plate reader. Every concentration
was analyzed in duplicate, and the resulting data points were fitted to a
sigmoidal curve using OriginPro 7.5G software. The turning point
describes the IC50 value. Alternatively, for α5β1, the plates were coated
with fibronectin (0.50 μg/mL), and the inhibitors were incubated with
soluble α5β1 (1.0 μg/mL). After treatment with primary (CD49e, 1.0
μg/mL) and secondary (anti-mouse-HRP, 2.0 μg/mL) antibodies, the
binding was visualized as described above. In all assays, each plate
contained Cilengitide32,34 as internal control.
(16) Liley, M.; Johnson, T. Tetrahedron Lett. 2000, 41, 3983−3985.
(17) Verhelst, S. H. L.; Witte, M. D.; Arastu-Kapur, S.; Fonovic, M.;
Bogyo, M. ChemBioChem 2006, 7, 943−950.
(18) Boeglin, D.; Lubell, W. D. J. Comb. Chem. 2005, 7, 864−878.
(19) Boeglin, D.; Xiang, Z.; Sorenson, N. B.; Wood, M. S.; Haskell-
Luevano, C.; Lubell, W. D. Chem. Biol. Drug Des. 2006, 67, 275−283.
(20) Han, H.; Janda, K. D. J. Am. Chem. Soc. 1996, 118, 2539−2544.
(21) Hansen, T. K. Tetrahedron Lett. 1999, 40, 9119−9120.
(22) Melendez, R. E.; Lubell, W. D. J. Am. Chem. Soc. 2004, 126,
6759−6764.
(23) Freeman, N. S.; Hurevich, M.; Gilon, C. Tetrahedron 2009, 65,
1737−1745.
(24) Freeman, N. S.; Tal-Gan, Y.; Klein, S.; Levitzki, A.; Gilon, C. J.
Org. Chem. 2011, 76, 3078−3085.
(25) Sabatino, D.; Proulx, C.; Klocek, S.; Bourguet, C. B.; Boeglin,
D.; Ong, H.; Lubell, W. D. Org. Lett. 2009, 11, 3650−3653.
(26) Bourguet, C. B.; Proulx, C.; Klocek, S.; Sabatino, D.; Lubell, W.
D. J. Pept. Sci. 2010, 16, 284−296.
(27) Sabatino, D.; Proulx, C.; Pohankova, P.; Ong, H.; Lubell, W. D.
J. Am. Chem. Soc. 2011, 133, 12493−12506.
(28) Zega, A. Curr. Med. Chem. 2005, 12, 589−597.
ASSOCIATED CONTENT
* Supporting Information
Characterization data. This material is available free of charge
■
(29) Goodman, S. L.; Holzemann, G.; Sulyok, G. A. G.; Kessler, H. J.
̈
S
Med. Chem. 2002, 45, 1045−1051.
(30) Dyker, H.; Scherkenbeck, J.; Gondol, D.; Goehrt, A.; Harder, A.
J. Org. Chem. 2001, 66, 3760−3766.
(31) Aumailley, M.; Gurrath, M.; Muller, G.; Calvete, R.; Timpl, R.;
̈
AUTHOR INFORMATION
Corresponding Author
Kessler, H. FEBS Lett. 1991, 291, 50−54.
■
(32) Dechantsreiter, M. A.; Planker, E.; Matha, B.; Lohof, E.;
Holzemann, G.; Jonczyk, A.; Goodman, S. L.; Kessler, H. J. Med. Chem.
̈
1999, 42, 3033−3040.
Notes
(33) Reardon, D. A.; Nabors, L. B.; Stupp, R.; Mikkelsen, T. Expert
Opin. Invest. Drugs 2008, 17, 1225−1235.
The authors declare no competing financial interest.
(34) Mas-Moruno, C.; Rechenmacher, F.; Kessler, H. Anti-Cancer
Agents Med. Chem. 2010, 10, 753−768.
ACKNOWLEDGMENTS
■
(35) Mas-Moruno, C.; Beck, J. G.; Doedens, L.; Frank, A. O.;
Marinelli, L.; Cosconati, S.; Novellino, E.; Kessler, H. Angew. Chem.,
Int. Ed. 2011, 50, 9496−9500.
This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC). J.S.
gratefully thanks the German Academic Alliance for his
fellowship.
(36) Gottschalk, K.-E.; Kessler, H. Angew. Chem., Int. Ed. 2002, 41,
3767−3774.
(37) Laufer, B.; Frank, A. O.; Chatterjee, J.; Neubauer, T.; Mas-
REFERENCES
■
Moruno, C.; Kummerlowe, G.; Kessler, H. Chem.Eur. J. 2010, 16,
̈
(1) Thormann, M.; Hoffmann, H. -J. J. Mol. Struct.: THEOCHEM
1999, 469, 63−76.
(2) Lee, H. J.; Ahn, I. A.; Ro, S.; Choi, K. H.; Choi, Y. S.; Lee, K. B. J.
Peptide Res. 2000, 56, 35−46.
5385−5390.
(38) Gibson, C.; Goodman, S. L.; Hahn, D.; Holzemann, G.; Kessler,
̈
H. J. Org. Chem. 1999, 64, 7388−7394.
(39) Heckmann, D.; Kessler, H. Design and Chemical Synthesis of
Integrin Ligands. In Methods in Enzymology: Integrins; Cheresh, D. A.,
Ed.; Academic Press: New York, 2007; pp 463−503.
(40) Demmer, O.; Frank, A. O.; Kessler, H. Design of Cyclic
Peptides. In Peptide and Protein Design for Biopharmaceutical
Applications; John Wiley & Sons, Ltd.: New York, 2009; pp 133−176.
(41) White, C. J.; Yudin, A. K. Nat. Chem. 2011, 3, 509−524.
(42) Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H. Acc. Chem.
Res. 2008, 41, 1331−1342.
(3) Lee, H. J.; Choi, K. H.; Ahn, I. A.; Ro, S.; Jang, H. G.; Choi, Y. S.;
Lee, K. B. J. Mol. Struct.: THEOCHEM 2001, 569, 43−54.
(4) Lee, H. J.; Song, J. W.; Choi, Y. S.; Park, H. M.; Lee, K. B. J. Am.
Chem. Soc. 2002, 124, 11881−11893.
(5) Lee, H. J.; Park, H. M.; Lee, K. B. Biophys. Chem. 2007, 125,
117−126.
(6) Andre, F.; Vicherat, A.; Boussard, G.; Aubry, A.; Marraud, M. J.
Pept. Res. 1997, 50, 372−381.
(7) Zouikri, M.; Vicherat, A.; Aubry, A.; Marraud, M.; Boussard, G. J.
Pept. Res. 1998, 52, 19−26.
(43) Freidinger, R. M.; Hinkle, J. S.; Perlow, D. S.; Arison, B. H. J.
Org. Chem. 1983, 48, 77−81.
(44) Teixido, M.; Albericio, F.; Giralt, E. J. Pept. Res. 2005, 65, 153−
66.
(45) Busnel, O.; Baudy-Floc’h, M. Tetrahedron Lett. 2007, 48, 5767−
5770.
(46) Bourguet, C. B.; Sabatino, D.; Lubell, W. D. Biopolymers 2008,
90, 824−831.
(47) Yu, H. M.; Chen, S. T.; Wang, K. T. J. Org. Chem. 1992, 57,
4781−4784.
(8) Benatalah, Z.; Aubry, A.; Boussard, G.; Marraud, M. Int. J. Pept.
Protein Res. 1991, 38, 603−605.
(9) Lecoq, A.; Boussard, G.; Marraud, M.; Aubry, A. Biopolymers
1993, 33, 1051−1059.
(10) Gante, J.; Krug, M.; Lauterbach, G.; Weitzel, R.; Hiller, W. J.
Pept. Sci. 1995, 1, 201−206.
(11) Marraud, M.; Aubry, A. Pept. Sci. 1996, 40, 45−83.
(12) Andre, F.; Boussard, G.; Bayeul, D.; Didierjean, C.; Aubry, A.;
Marraud, M. J. Pept. Res. 1997, 49, 556−562.
5277
dx.doi.org/10.1021/jo300311q | J. Org. Chem. 2012, 77, 5271−5278