3094
F. M. Libero et al. / Tetrahedron Letters 53 (2012) 3091–3094
4193; (e) Kantam, M. L.; Shiva Kumar, K. B.; Phani Raja, K. J. Mol. Catal. A: Chem.
2006, 247, 186; (f) Lang, L.; Li, B.; Liu, W.; Jiang, L.; Xu, Z.; Yin, G. Chem.
Commun. 2010, 46, 448; (g) Aridoss, G.; Laali, K. K. Eur. J. Org. Chem. 2011, 6343;
(h) Kantam, M. L.; Shiva Kumar, K. B.; Sridhar, C. Adv. Synth. Catal. 2005, 347,
1212; (i) Jin, T.; Kitahara, F.; Kamijo, S.; Yamamoto, Y. Tetrahedron Lett. 2008,
49, 2824; (j) Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S. Tetrahedron
Lett. 2009, 50, 4435.
fluconazole was not different when compared with compound 4a
for Candida albicans, Candida globosa, Thrichosporum asahii, and
Candida parapsilosis. Based on this, it is possible to conclude that
the effect of compound 4a is comparable with an active antifungal
drug largely used for the treatment of fungal infections. On the
other hand, the minimum inhibitory concentration of fluconazole
was different when compared with compound 4a for Candida
lipolytica, Cryptococcus laurntii, and Candida guilhermondi. Thus,
our results are a contribution to the research about the develop-
ment of new antifungal drugs, and compound 4a evaluated shows
good results when compared to fluconazole.
In summary, we have demonstrated the efficient synthesis of
novel selenium and tellurium containing tetrazoles. The corre-
sponding 5-arylchalcogenoalkyl-1H-tetrazoles were synthesized
in high yields by 1,3-dipolar cycloaddition of arylchalcogenoalkyl-
nitriles with sodium azide by zinc catalysis in aqueous solution.
The obtained compound 4a was screened for antifungal activity
and presented good results on inhibition of T. asahii and C. lipolyti-
ca. This protocol is an efficient method to produce new selenium-
nitrogen compounds with antifungal activity. Studies regarding
evaluation of antifungal activity of the 5-arylchalcogenoalkyl-1H-
tetrazoles synthesized are ongoing in our lab.
11. (a) Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945; (b) Demko, Z. P.;
Sharpless, K. B. Org. Lett. 2002, 4, 2525; (c) Himo, F.; Demko, Z. P.; Noodleman,
L.; Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983.
12. (a) Rajasekaran, A.; Thampi, P. P. Eur. J. Med. Chem. 2004, 39, 273; (b)
Kozikowski, A. P.; Zhang, J.; Nan, F.; Petukhov, P. A.; Grajkowska, E.;
Wroblewski, J. T.; Yamamoto, T.; Bzdega, T.; Wroblewska, B.; Neale, J. J. Med.
Chem. 2004, 47, 1729.
13. (a) Parnham, M. J.; Graf, E. Prog. Drug. Res. 1991, 36, 9; (b) Mugesh, G.; du Mont,
W. W.; Sies, H. Chem. Rev. 2001, 101, 2125; (c) Nogueira, C. W.; Zeni, G.; Rocha,
J. B. T. Chem. Rev. 2004, 104, 6255.
14. (a) Wirth, T. Organoselenium Chemistry. In Topics in Current Chemistry;
Springer: Heidelberg, 2000; (b) Alberto, E. E.; Braga, A. L. Selenium and
Tellurium Chemistry From Small Molecules to Biomolecules and Materials In
Derek, W. J., Risto, L., Eds.; Springer: Berlin Heidelberg, 2011; (c) Wirth, T.
Organoselenium Chemistry: Synthesis and Reactions; Wiley: Weinheim, 2011; (d)
Petragnani, N.; Stefani, H. A. Tellurium in Organic Synthesis, 2nd ed.; Academic
Press: London, 2007; (e) Perin, G.; Lenardão, E. J.; Jacob, R. G.; Panatieri, R. B.
Chem. Rev. 2009, 109, 1277; (f) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.;
Santi, C.; Wirth, T. Angew. Chem., Int. Ed. 2009, 48, 8409; (g) Zeni, G.; Braga, A.
L.; Stefani, H. A. Acc. Chem. Res. 2003, 36, 731; (h) Zeni, G.; Ludtke, D. S.;
Panatieri, R. B.; Braga, A. L. Chem. Rev. 2006, 106, 1032.
15. (a) Freudendahl, D. M.; Shahzad, S. A.; Wirth, T. Eur. J. Org. Chem. 2009, 1649;
(b) Braga, A. L.; Lüdtke, D. S.; Vargas, F. Curr. Org. Chem. 2006, 10, 1921; (c)
Godoi, M.; Paixão, M. W.; Braga, A. L. Dalton Trans. 2011, 40, 11347.
16. (a) Disli, A.; Salman, M. Russ. J. Org. Chem. 2009, 45, 151; (b) Özkan, H.; Yavuz,
S.; Disli, A.; Yıldırır, Y.; Türker, L. Heteroatom Chem. 2007, 18, 255.
17. Deobald, A. M.; Camargo, L. R. S.; Hörner, M.; Rodrigues, O. E. D.; Alves, D.;
Braga, A. L. Synthesis 2011, 2397.
18. For examples see: (a) Arrica, M. A.; Wirth, T. Eur. J. Org. Chem. 2005, 395; (b)
Bieber, L. W.; Sá, A. C. P. F.; Menezes, P. H.; Gonçalves, S. M. C. Tetrahedron Lett.
2001, 42, 4597; (c) Wang, H.; Marnett, L. J.; Harris, T. M.; Rizzo, C. J. Chem. Res.
Toxicol. 2004, 17, 144; (d) Barahman, M.; Mojgan, S. Synlett 2005, 121.
19. (a) Nefedova, T. V.; Kubatiev, A. A.; Martynov, A. V.; Guseva, S. A.;
Kazimirovskaya, V. B.; Mirskova, A. N.; Novikova, N. V.; Lobanova, E. G.;
Nepsha, V. D.; Moskvitina, L. T.; Voronkov, M. G. Pharm. Chem. J. 1987, 21, 648;
Zhang, S. –J.; Dong, J. –Q.; Wang, Y.-G. Synth. Commun. 2003, 33, 1891; (c) Van
Caneghen, P. Biochem. Pharmacol. 1974, 23, 3491.
Acknowledgments
We are grateful to CAPES, CNPq, FINEP, and FAPERGS for the
financial support.
References and notes
1. (a) Katritzky, A. R.; Pozharskii, A. F. Handbook of Heterocyclic Chemistry, Second
Edition; Pergamon: Oxford, 2000; (b) Eicher, T.; Hauptmann, S. The Chemistry of
Heterocycles, Second Edition; Wiley, 2003.
2. (a) Tappan, B. C.; Huynh, M. H.; Hiskey, M. A.; Chavez, D. E.; Luther, E. P.; Mang,
J. T.; Son, S. F. J. Am. Chem. Soc. 2006, 128, 6589; (b) Talawar, M. B.; Agrawal, A.
P.; Anniyappan, M.; Wani, D. S.; Bansode, M. K.; Gore, G. M. J. Hazard. Mater.
2006, 137, 1074; (c) Tao, G. H.; Guo, Y.; Joo, Y. H.; Twamley, B.; Shreeve, J. M. J.
Mater. Chem. 2008, 18, 5524.
3. (a) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558; (b) Zhou, S. B.; Zhou,
Y. Q.; Xing, Y. L.; Wang, N. X.; Cao, L. H. Chirality 2011, 23, 504; (c) Barbayianni,
E.; Bouzi, P.; Constantinou-Kokotou, V.; Ragoussis, V.; Kokotos, G. Heterocycles
2009, 78, 1243; (d) Odedra, A.; Seeberger, P. H. Angew. Chem., Int. Ed. 2009, 48,
2699; (e) Dabbagh, H. A.; Najafi-Chermahini, A.; Banibairami, S. Tetrahedron
Lett. 2006, 47, 3929.
20. Das, B.; Reddy, C. R.; Kumar, D. N.; Krishnaiah, M.; Narender, R. Synlett 2010,
0391.
21. General procedure for the synthesis of arylchalcogenoalkyl-1H-tetrazoles 4a–m:
To
a
5 mL round-bottomed flask was added the corresponding
arylchalcogenoalkyl nitrile 3a–m (0.5 mmol), sodium azide (0.5 mmol), zinc
bromide (0.5 mmol), and 2 mL of H2O. The reaction mixture was refluxed for
24 h under vigorous stirring. After this time, HCl (2 M, 3 mL) and ethyl acetate
(15 mL) were added, and vigorous stirring was continued until no solid was
present and the aqueous layer had a pH of 1. The organic layer was isolated and
the aqueous layer was extracted with ethyl acetate (2 Â 15 mL). The combined
organic layers were dried with MgSO4 and evaporated under reduced pressure.
The resultant products 4a–m were isolated in chromatography column with
hexane/ethyl acetate as eluent and recrystallized if necessary.
4. Moderhack, D. J. Prakt. Chem. 1988, 340, 687.
5. Koldobskii, G. I.; Ostrovskii, V. A. Usp. Khim. 1994, 63, 847.
6. (a) Ostrovskii, V. A.; Pevzner, M. S.; Kofmna, T. P.; Shcherbinin, M. B.; Tselinskii,
I. V. Targets Heterocycl. Syst. 1999, 3, 467; (b) Hiskey, M.; Chavez, D. E.; Naud, D.
L.; Son, S. F.; Berghout, H. L.; Bome, C. A. Proc. Int. Pyrotech. Semin. 2000, 27, 3.
7. (a) Singh, R. P.; Varma, R. D.; Meshri, D. T.; Shreeve, J. M. Angew. Chem., Int. Ed.
2006, 45, 3584; (b) Joo, Y. H.; Shreeve, J. M. Angew. Chem., Int. Ed. 2009, 48, 564;
(c) Joo, Y. H.; Shreeve, J. M. Angew. Chem., Int. Ed. 2010, 49, 7320; (d) Joo, Y. H.;
Shreeve, J. M. Chem. Eur. J. 2009, 15, 3198; (e) Guo, Y.; Tao, G. H.; Zeng, Z.; Gao,
H.; Parrish, D. A.; Shreeve, J. M. Chem. Eur. J. 2010, 16, 3753; (f) Chavez, D. E.;
Hiskey, M. A. J. Energy Mater. 1999, 17, 357.
8. (a) Holland, G. F.; Pereira, J. N. J. Med. Chem. 1967, 10, 149; (b) Figdor, S. K.;
Schach von Wittenau, M. J. Med. Chem. 1967, 10, 1158; (c) Esplin, D. W.;
Woodbury, D. M. J. Pharmacol. Exp. Ther. 1956, 118, 129; (d) Siles, R.; Kawasaki,
Y.; Ross, P.; Freire, E. Bioorg. Med. Chem. Lett. 2011, 21, 2305; (e) Al-Hourani, B.
J.; Sharma, S. K.; Mane, J. Y.; Tuszynski, J.; Baracos, V.; Kniess, T.; Suresh, N.;
Pietzsch, J.; Wuest, F. Bioorg. Med. Chem. Lett. 2011, 21, 1823; (f) Schaffert, E. S.;
Höfner, G.; Wanner, K. T. Bioorg. Med. Chem. 2011, 19, 6492; (g) Upadhayaya, R.
S.; Jain, S.; Sinha, N.; Kishore, N.; Chandra, R.; Arora, S. K. Eur. J. Med. Chem.
2004, 39, 579; (h) Kumar, C. N. S. S.; Parida, D. K.; Santhoshi, A.; Kota, A. K.;
Sridhar, B.; Rao,, V. J. Med Chem. Commun. 2011, 2, 486.
Selected spectral and analytical data for 5-(phenylselanylmethyl)-1H-tetrazole
(4a): Yield: 0.097 g (82%); white solid; mp: 78–79 °C. MS: m/z (rel. int.) 242
(M+2, 10), 240 (M, 57), 172 (10), 157 (57), 118 (38), 91 (48), 77 (100), 55 (86).
IR (KBr):
m = 3356, 2997, 2852, 2713, 2609, 1653, 1558, 1473, 1433, 1369, 1255,
1209, 1051, 1020, 839, 742, 694 cmÀ1 1H NMR (400 MHz, CDCl3): d = 7.47–
.
7.44 (m, 2H), 7.29–7.24 (m, 3H), 4.3 (s, 2H). 13C NMR (100 MHz, CDCl3):
d = 156.09, 134.12, 129.54, 128.59, 127.77, 16.74. HRMS: m/z calculated mass
to C8H8N4Se+H+: 239.9914; found: 239.9915.
22. Turan-Zitouni, G.; Kaplanciki, Z. A.; Yildiz, M. T.; Chevallet, P.; Kaya, D. Eur. J.
Med. Chem. 2005, 40, 607.
23. Minimum
inhibitory
concentration
(MIC)—Microdilution
assay:
Recommendations of National Committee for Clinical Laboratory Standards
(NCCLS) (2002, M27-A2) were mostly used to measure the minimum
inhibitory concentration (MIC) values. Compound 4a was diluted on
dimethyl sulfoxide (DMSO) tested in concentrations ranging from 500 to
0.85
lM, in triplicate in each assay, and the assays were repeated three times
in their entirety to confirm the results. Compound 4a (100
l
L) was serially
diluted by 50% with the medium RPMI 1640 (with glutamine and phenol red
without bicarbonate) buffered in MOPS (3-(N-morfolin)propanosulfonic acid)
in 96 well microtiter plates, and 100 lL of fungal culture was added to each
well. The MIC was recorded as the lowest concentration of the tested drug that
inhibited the fungal growth.
9. (a) Singh, H.; Chawla, A. S.; Kapoor, V. K.; Paul, D.; Malhotra, R. K. Prog. Med.
Chem. 1980, 17, 151; (b) Hert, R. J. Bioorg. Med. Chem. 2002, 10, 3379.
10. (a) Matthews, D. P.; Green, J. E.; Shuker, A. J. J. Comb. Chem. 2000, 2, 19; (b)
Kumar, A.; Narayanan, R.; Shechter, H. J. Org. Chem. 1996, 61, 4462; (c)
Amantini, D.; Beleggia, R.; Fringuelli, F.; Pizzo, F.; Vaccoro, L. J. Org. Chem. 2004,
69, 2896; (d) Gyoung, Y. S.; Shim, J.-G.; Yamamoto, Y. Tetrahedron Lett. 2000, 41,