Biochemistry
ARTICLE
(39) Kuntz, D. A., Osowski, R., Schudok, M., Wierenga, R. K.,
Mueller, K., Kessler, H., and Opperdoes, F. R. (1992) Inhibition of
triosephosphate isomerase from Trypanosoma brucei with cyclic hex-
apeptides. Eur. J. Biochem. 207, 441–447.
(40) Callens, M., Van Roy, J., Zeelen, J. P., Borchert, T. V., Nalis, D.,
Wierenga, R. K., and Opperdoes, F. R. (1993) Selective interaction of
glycosomal enzymes from Trypanosoma brucei with hydrophobic cyclic
hexapeptides. Biochem. Biophys. Res. Commun. 195, 667–672.
(41) Kishan, K. V. R., Zeelen, J. P., NOble, M. E. M., Borchert, T. V.,
and Wierenga, R. K. (1994) Comparison of the structures and the crystal
contacts of trypanosomal triosephosphate isomerase in four different
crystal forms. Protein Sci. 3, 779–787.
(42) Kursula, I., and Wierenga, R. K. (2003) Crystal structure of
triosephosphate isomerase complexed with 2-phosphoglycolate at 0.83-Å
resolution. J. Biol. Chem. 278, 9544–9551.
(43) Borchert, T. V., Abagyan, R., Kishan, K. V. R., Zeelen, J. P., and
Wierenga, R. K. (1993) The crystal structure of an engineered mono-
meric triosephosphate isomerase, monoTIM: the correct modeling of an
eight-residue loop. Structure (London) 1, 205–213.
(44) Borchert, T. V., Abagyan, R., Jaenicke, R., and Wierenga, R. K.
(1994) Design, creation, and characterization of a stable, monomeric
triosephosphate isomerase. Proc. Natl. Acad. Sci. U. S. A. 91, 1515–1518.
(45) Borchert, T. V., Kishan, K. V. R., Zeelen, J. P., Schliebs, W.,
Thanki, N., Abagyan, R., Jaenicke, R., and Wierenga, R. K. (1995) Three
new crystal structures of point mutation variant of mono TIM: conforma-
tional flexibility of loop-1, loop-4 and loop-8. Structure 3, 669–679.
(46) Schliebs, W., Thani, N., Eritja, R., and Wierenga, R. (1996)
Active site properties of monomeric triosephosphate isomerase
(monoTIM) as deduced from mutational and structural studies. Protein
Sci. 5, 229–239.
(47) Schliebs, W., Thanki, N., Jaenicke, R., and Wierenga, R. K.
(1997) A double mutation at the tip of the dimer interface loop of
triosephosphate isomerase generates active monomers with reduced
stability. Biochemistry 36, 9655–9662.
(48) Alahuhta, M., Casteleijn, M. G., Neubauer, P., and Wierenga,
R. K. (2008) Structural studies show that the A178L mutation in the
C-terminal hinge of the catalytic loop-6 of triosephosphate isomerase
(TIM) induces a closed-like conformation in dimeric and monomeric
TIM. Acta Crystallogr. D Biol. Crystallogr. 64, 178–188.
(49) Casteleijn, M. G., Alahuhta, M., Groebel, K., El-Sayed, I.,
Augustyns, K., Lambeir, A. M., Neubauer, P., and Wierenga, R. K.
(2006) Functional role of the conserved active site proline of triosepho-
sphate isomerase. Biochemistry 45, 15483–15494.
(50) O’Donoghue, A. C., Amyes, T. L., and Richard, J. P. (2005)
Hydron transfer catalyzed by triosephosphate isomerase. Products of
isomerization of (R)-glyceraldehyde 3-phosphate in D2O. Biochemistry
44, 2610–2621.
(51) O’Donoghue, A. C., Amyes, T. L., and Richard, J. P. (2008)
Slow proton transfer from the hydrogen-labelled carboxylic acid side
chain (Glu-165) of triosephosphate isomerase to imidazole buffer in
D2O. Org. Biomol. Chem. 6, 391–396.
(52) O’Donoghue, A. C., Amyes, T. L., and Richard, J. P. (2005)
Hydron transfer catalyzed by triosephosphate isomerase. Products of
isomerization of dihydroxyacetone phosphate in D2O. Biochemistry
44, 2622–2631.
(53) Salin, M., Kapetaniou, E. G., Vaismaa, M., Lajunen, M.,
Casteleijn, M. G., Neubauer, P., Salmon, L., and Wierenga, R. K.
(2010) Crystallographic binding studies with an engineered monomeric
variant of triosephosphate isomerase. Acta Crystallogr. D Biol. Crystallogr.
66, 934–944.
(54) Bergemeyer, H. U., Haid, E., and Nelboeck-Hochstetter, M.
(1972) Process for preparing open ring tetrose and triosephosphate
acetals and phosphate ketals, U. S. Patent 3,662,037.
(55) Borchert, T. V., Pratt, K., Zeelen, J. P., Callens, M., Noble,
M. E. M., Opperdoes, F. R., Michels, P. A. M., and Wierenga, R. K.
(1993) Overexpression of trypanosomal triosephosphate isomerase in
Escherichia coli and characterization of a dimer-interface mutant. Eur. J.
Biochem. 211, 703–710.
(56) Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D.,
and Bairoch, A. (2003) ExPASy: the proteomics server for in-depth
protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788.
(57) Go, M. K., Koudelka, A., Amyes, T. L., and Richard, J. P. (2010)
Role of Lys-12 in catalysis by triosephosphate isomerase: A two-part
substrate approach. Biochemistry 49, 5377–5389.
(58) Glasoe, P. K., and Long, F. A. (1960) Use of glass electrodes to
measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–190.
(59) Plaut, B., and Knowles, J. R. (1972) pH-Dependence of the
triose phosphate isomerase reaction. Biochem. J. 129, 311–320.
(60) Go, M. D. K. (2009) Studies on enzymatic and non-enzymatic
proton transfer in aqueous solution, in Chemistry, p 181, University at
Buffalo, Buffalo.
(61) George, W. O., and Collins, G. C. S. (1971) Nuclear magnetic
resonance spectra of glycolaldehyde. J. Chem. Soc. B 1352–1355.
(62) Veech, R. L., Raijman, L., Dalziel, K., and Krebs, H. A. (1969)
Disequilibrium in the triose phosphate isomerase system in rat liver.
Biochem. J. 115, 837–842.
(63) Amyes, T. L., and Richard, J. P. (1992) Generation and stability
of a simple thiol ester enolate in aqueous solution. J. Am. Chem. Soc.
114, 10297–10302.
(64) Amyes, T. L., and Richard, J. P. (1996) Determination of
the pKa of ethyl acetate: Brønsted correlation for deprotonation of
a simple oxygen ester in aqueous solution. J. Am. Chem. Soc. 118,
3129–3141.
(65) Richard, J. P., Williams, G., O’Donoghue, A. C., and Amyes,
T. L. (2002) Formation and stability of enolates of acetamide and acetate
anion: An eigen plot for proton transfer at R-carbonyl carbon. J. Am.
Chem. Soc. 124, 2957–2968.
(66) Rios, A., Richard, J. P., and Amyes, T. L. (2002) Formation and
stability of peptide enolates in aqueous solution. J. Am. Chem. Soc.
124, 8251–8259.
(67) Toth, K., and Richard, J. P. (2007) Covalent catalysis by
pyridoxal: Evaluation of the effect of the cofactor on the carbon acidity
of glycine. J. Am. Chem. Soc. 129, 3013–3021.
(68) Crugeiras, J., Rios, A., Riveiros, E., Amyes, T. L., and Richard,
J. P. (2008) Glycine enolates: The effect of formation of iminium ions to
simple ketones on R-amino carbon acidity and a comparison with
pyridoxal iminium ions. J. Am. Chem. Soc. 130, 2041–2050.
(69) Richard, J. P. (1984) Acid-base catalysis of the elimination and
isomerization reactions of triose phosphates. J. Am. Chem. Soc. 106,
4926–4936.
(70) Go, M. K., Malabanan, M. M., Amyes, T. L., and Richard, J. P.
(2010) Bovine serum albumin-catalyzed deprotonation of [1-13C]glycol-
aldehyde: Protein reactivity toward deprotonation of the R-hydroxy
R-carbonyl carbon. Biochemistry 49, 7704–7708.
(71) Rose, I. A., Fung, W. J., and Warms, J. V. B. (1990) Proton
diffusion in the active site of triosephosphate isomerase. Biochemistry
29, 4312–4317.
(72) Eigen, M. (1964) Proton transfer, acid-base catalysis, and
enzymatic hydrolysis. Angew. Chem., Int. Ed. Engl. 3, 1–72.
(73) Go, M. K., Amyes, T. L., and Richard, J. P. (2010) Rescue of
K12G mutant TIM by NH4þ and alkylammonium cations: The reaction
of an enzyme in pieces. J. Am. Chem. Soc. 132, 13525–13532.
(74) Joseph-McCarthy, D., Lolis, E., Komives, E. A., and Petsko,
G. A. (1994) Crystal structure of the K12M/G15A triosephosphate
isomerase double mutant and electrostatic analysis of the active site.
Biochemistry 33, 2815–2823.
(75) Lodi, P. J., Chang, L. C., Knowles, J. R., and Komives, E. A.
(1994) Triosephosphate isomerase requires a positively charged active
site: The role of lysine-12. Biochemistry 33, 2809–2814.
(76) Komives, E. A., Chang, L. C., Lolis, E., Tilton, R. F., Petsko,
G. A., and Knowles, J. R. (1991) Electrophilic catalysis in triosepho-
sphate isomerase: the role of histidine-95. Biochemistry 30, 3011–3019.
(77) Nickbarg, E. B., Davenport, R. C., Petsko, G. A., and Knowles,
J. R. (1988) Triosephosphate isomerase: removal of a putatively electro-
philic histidine residue results in a subtle change in catalytic mechanism.
Biochemistry 27, 5948–5960.
5778
dx.doi.org/10.1021/bi2005416 |Biochemistry 2011, 50, 5767–5779