4846
Y. Niko et al. / Tetrahedron Letters 52 (2011) 4843–4847
Figure 2. Fluorescence spectra of (a) 1a and (b) 2a in various solvents (
e
= 10,000, ethanol solvent, kex = kabs, room temperature).
solvents (cyclohexane and dichloromethane), and a high-viscosity
solvent (glycerin)30 (Fig. 2).
is expected that new functions and applications of such compounds
will be proposed. We are currently investigating whether other
fluorophores such as naphthalene, anthracene, and polycyclic aro-
matic hydrocarbons can exhibit the same effects when N-alkyl-type
or N,N-dialkyl-type amide groups are incorporated into them.
N-Alkyl-type 1
As shown in Figure 2a, the shape of the N-alkyl-type 1a fluores-
cence spectra exhibited no dependence on the polarity of the sol-
vent. Although solvent-sensitive changes in the vibronic structure,
one of the advantageous features of pyrene, were not observed, com-
pound 1a showed strong emission in all solvents, especially viscous
glycerin media (Ufl = 0.91), as well as a stable emission color. The
fact that 1a shows a similar wavelength in both the absorption
and the fluorescence emissions, along with the higher fluorescence
quantum yields as compared to those of pyrene, indicates that such
compounds are useful as fluorescence probes, labels, and other
luminescence materials.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of Photochemistry,
3rd ed; Taylor & Francis, 2006.
2. Kalyanasundaram, K.; Thomas, J. K. J. Am. Chem. Soc. 1977, 99(7), 2039–2044.
3. Winnik, F. M. Chem. Rev. 1993, 93, 587–614.
4. Karpovic, D. S.; Blanchard, G. J. Langmuir 1996, 12, 5522–5524.
5. Galla, H.-J.; Hartmann, W.; Theilen, U.; Sackmann, E. Membr. Biol. 1979, 48,
215–236.
6. Saito, Y.; Shinohara, Y.; Ishioroshi, S.; Suzuki, A.; Tanaka, M.; Saito, I.
Tetrahedron Lett. 2011, 52, 2359–2361.
N,N-Dialkyl-type 2
Tertiary (N,N-dialkyl-type) 2a was observed to have weak fluo-
rescence emission in almost all solvents, similar to the results ob-
tained for ethanol (Ufl <0.01). However, in glycerin (highly viscous
media), relatively strong fluorescence was observed (Ufl = 0.082).
This is because the viscosity of glycerin prevented molecular vibra-
tions. Considering these results along with the TD-DFT calculations
and the already reported TICT mechanism, it can be inferred that
the high non-radiative constant (knr) was mainly derived from a
vibrational deactivation process and not from an intersystem
crossing process or by the generation of charge separation species.
Thus, because 2a potentially possesses fluorescence emitting abil-
ity, the fluorescence of 2a can be controlled by adjusting its vibra-
tional relaxation.
In conclusion, the photophysical properties of two types of
pyrene-1-carboxamide derivatives (N-alkyl-type 1 and N,N-dialkyl-
type 2) and theoretical insights into these compounds have been
discussed. N-Alkyl-type 1a showed strong fluorescence emission
(EtOH: Ufl = 0.61) in all solvents with almost no changes in the
UV–vis and in fluorescence spectra. N,N-Dialkyl-type 2a showed
weak emission (Ufl <0.01) in almost all solvents. However, in highly
viscous media (glycerin), strong fluorescence was observed
7. Saito, Y.; Suzuki, A.; Imai, K.; Nemoto, N.; Saito, I. Tetrahedron Lett. 2010, 51,
2606–2609.
8. Fujimoto, K.; Yamada, S.; Inouye, M. Chem. Commun. 2009, 7164–7166.
9. (a) Sumi, K.; Konishi, G. Molecules 2010, 15, 7582–7592; (b) Uchimura, M.;
Watanabe, Y.; Araoka, F.; Watanabe, J.; Takezoe, H.; Konishi, G. Adv. Mater.
2010, 22, 4473–4478; (c) Watanabe, Y.; Uchimura, M.; Araoka, F.; Konishi, G.;
Watanabe, J.; Takezoe, H. Appl. Phys. Express 2009, 2, 102501.
10. (a) Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K.; Shimzu, H.; Inouye, M.
Chem. Eur. J. 2006, 12, 824–831; (b) Fujimoto, K.; Shimizu, H.; Frusyo, M.;
Akiyama, S.; Ishida, M.; Furukawa, U.; Yokoo, T.; Inouye, M. Tetrahedron 2009,
45, 9357–9361; (c) Shimizu, H.; Fujimoto, K.; Furusyo, M.; Maeda, H.; Nanai, Y.;
Mizuno, K.; Inouye, M. J. Org. Chem. 2007, 72, 1530–1533.
11. Yang, Y.; Gou, X.; Blecha, J.; Cao, H. Tetrahedron Lett. 2010, 51, 3422–3425.
12. Kumar, M.; Kumar, R.; Bhalla, V. Tetrahedron Lett. 2010, 51, 5559–5562.
13. (a) Jung, J. H.; Lee, M. H.; Kim, H. J.; Jung, H. S.; Lee, S. Y.; Shin, N. R.; No, K.; Kim,
J. S. Tetrahedron Lett. 2009, 50, 2013–2016; (b) Diring, S.; Ziessel, R. Tetrahedron
Lett. 2009, 50, 1203–1208; (c) Fukuda, M.; Nakamura, M.; Takada, T.; Yamana,
K. Tetrahedron Lett. 2010, 51, 1732–1735; (d) Hirano, T.; Osaki, T.; Fuji, S.;
Komatsu, D.; Azumaya, I.; Tanatani, A.; Kagechika, H. Tetrahedron Lett. 2009, 50,
488–491.
14. Isied, S. S.; Ogawa, M. Y.; Wishart, J. F. Chem. Rev. 1992, 92, 381–394.
15. Sisido, M.; Hoshino, S.; Kusano, H.; Kuragaki, M.; Makino, M.; Sasaki, H.; Smith,
T. A.; Ghiggino, K. P. J. Phys. Chem. B 2001, 105, 10407–10415.
16. Piotrowiak, P. Chem. Soc. Rev. 1999, 28, 143–150.
17. Fox, M. A.; Galoppini, E. J. Am. Chem. Soc. 1997, 119(23), 5277–5285.
18. Manoharan, M.; Tivel, K. L.; Zhao, M.; Nafisi, K.; Netzel, T. L. J. Phys. Chem. 1995,
99, 17461–17472.
19. Karuppannan, S.; Chambron, J.-C. Chem. Asian J. 2011, 6, 964–984.
20. Herkstroeter, W. G.; Lamola, A. A.; Hammond, G. S. J. Am. Chem. Soc. 1964, 86,
4537–4540.
21. Boldridge, D. W.; Justus, B. L.; Scott, G. W. J. Chem. Phys. 1984, 80, 3179–3184.
22. Kumar, C. V.; Chattopadhyay, S. K.; Das, P. K. Photochem. Photobiol. 1983, 38,
141–152.
(Ufl = 0.082) because of the suppression of molecular vibrations.
Owing to the excellent and stable emission properties of 1a, N-
alkyl-type 1 can be used as a fluorescence probe and label material.
N,N-Dialkyl-type 2 can be used as a fluorescence environmental re-
sponse sensor material because of its unique on–off emission.
Moreover, such compounds have many analogs, and therefore, it
23. Nucci, N. V.; Zelent, B.; Vanderkooi, J. M. J. Fluoresc. 2007, 18, 41–49.
24. Tulock, J. J.; Blanchard, G. J. J. Phys. Chem. B 1998, 102, 7148–7155.