Page 19 of 21
ACS Chemical Biology
1
2
3
4
5
6
7
8
9
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
31. Grishin, A. M., Ajamian, E., Zhang, L., Rouiller, I., Bostina, M., and Cygler, M. (2012) Protein-protein
interactions in the β-oxidation part of the phenylacetate utilization pathway: crystal structure of the PaaF-PaaG
hydratase-isomerase complex, J. Biol. Chem. 287, 37986–37996.
32. Engel, C. K., Kiema, T. R., Hiltunen, J. K., and Wierenga, R. K. (1998) The crystal structure of enoyl-CoA
hydratase complexed with octanoyl-CoA reveals the structural adaptations required for binding of a long chain
fatty acid-CoA molecule, J. Mol. Biol. 275, 847–859.
33. Kasaragod, P., Schmitz, W., Hiltunen, J. K., and Wierenga, R. K. (2013) The isomerase and hydratase
reaction mechanism of the crotonase active site of the multifunctional enzyme (type-1), as deduced from
structures of complexes with 3S-hydroxy-acyl-CoA, FEBS J. 280, 3160–3175.
34. Partanen, S. T., Novikov, D. K., Popov, A. N., Mursula, A. M., Kalervo Hiltunen, J., and Wierenga, R. K.
(2004) The 1.3Å Crystal Structure of Human Mitochondrial Δ3-Δ2-Enoyl-CoA Isomerase Shows a Novel Mode
of Binding for the Fatty Acyl Group, J. Mol. Biol. 342, 1197–1208.
35. Zhang, D., Yu, W., Geisbrecht, B. V., Gould, S. J., Sprecher, H., and Schulz, H. (2002) Functional
characterization of Delta3,Delta2-enoyl-CoA isomerases from rat liver, J. Biol. Chem. 277, 9127–9132.
36. Mursula, A. M., van Aalten, D. M.F., Hiltunen, J.K., and Wierenga, R. K. (2001) The crystal structure of Δ3-
Δ2-enoyl-CoA isomerase, J. Mol. Biol. 309, 845–853.
37. Crooks, G. P., and Copley, S. D. (1994) Purification and characterization of 4-chlorobenzoyl CoA
dehalogenase from Arthrobacter sp. strain 4-CB1, Biochemistry 33, 11645–11649.
38. Kichise, T., Hisano, T., Takeda, K., and Miki, K. (2009) Crystal structure of phenylacetic acid degradation
protein PaaG from Thermus thermophilus HB8, Proteins 76, 779–786.
39. Peter, D. M., Vögeli, B., Cortina, N. S., and Erb, T. J. (2016) A Chemo-Enzymatic Road Map to the
Synthesis of CoA Esters, Molecules (Basel, Switzerland) 21, 517.
40. Krissinel, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state, J. Mol.
Biol. 372, 774–797.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
41. Liebschner, D., Afonine, P. V., Moriarty, N. W., Poon, B. K., Sobolev, O. V., Terwilliger, T. C., and Adams,
P. D. (2017) Polder maps: improving OMIT maps by excluding bulk solvent, Acta Crystallogr. D Struct. Biol.
73, 148–157.
42. Vogel, E., and Günther, H. (1967) Benzene Oxide-Oxepin Valence Tautomerism, Angew. Chem. Int. Ed.
Engl. 6, 385–401.
43. Cane, D. E., Wu, Z., and van Epp, J. E. (1992) Thiotropocin biosynthesis. Shikimate origin of a sulfur-
containing tropolone derivative, J. Am. Chem. Soc. 114, 8479–8483.
44. Rost, R., Haas, S., Hammer, E., Herrmann, H., and Burchhardt, G. (2002) Molecular analysis of aerobic
phenylacetate degradation in Azoarcus evansii, Mol. Genet. Genomics 267, 656–663.
45. Thiel, V., Brinkhoff, T., Dickschat, J. S., Wickel, S., Grunenberg, J., Wagner-Döbler, I., Simon, M., and
Schulz, S. (2010) Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria
of the marine Roseobacter clade, Org. Biomol. Chem. 8, 234–246.
46. Citron, C. A., Rabe, P., and Dickschat, J. S. (2012) The scent of bacteria: headspace analysis for the
discovery of natural products, J. Nat. Prod. 75, 1765–1776.
47. Wilson, M. Z., Wang, R., Gitai, Z., and Seyedsayamdost, M. R. (2016) Mode of action and resistance studies
unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink, Proc.
Natl. Acad. Sci. U S A 113, 1630–1635.
48. Raina, J.-B., Tapiolas, D., Motti, C. A., Foret, S., Seemann, T., Tebben, J., Willis, B. L., and Bourne, D. G.
(2016) Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals, PeerJ
4, e2275.
49. Rasmussen, B. B., Grotkjær, T., D'Alvise, P. W., Yin, G., Zhang, F., Bunk, B., Spröer, C., Bentzon-Tilia, M.,
and Gram, L. (2016) Vibrio anguillarum Is Genetically and Phenotypically Unaffected by Long-Term
Continuous Exposure to the Antibacterial Compound Tropodithietic Acid, Appl. Environ. Microbiol. 82, 4802–
4810.
50. Porsby, C. H., Webber, M. A., Nielsen, K. F., Piddock, L. J. V., and Gram, L. (2011) Resistance and
tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select, Antimicrob. Agents Chemother.
55, 1332–1337.
51. Schachter, D., and Taggart, J. V. (1953) Benzoyl coenzyme A and hippurate synthesis, J. Biol. Chem. 203,
925–934.
52. Willistein, M., Haas, J., Fuchs, J., Estelmann, S., Ferlaino, S., Müller, M., Lüdeke, S., and Boll, M. (2018)
Enantioselective Enzymatic Naphthoyl Ring Reduction, Chemistry 24, 12505–12508.
53. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W.,
Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D.
C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based
system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr. 66, 213–221.
54. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics, Acta Crystallogr. D
Biol. Crystallogr. 60, 2126–2132.
14
ACS Paragon Plus Environment