3352
D. K. Nair et al. / Tetrahedron Letters 53 (2012) 3349–3352
n
O
O
O
O
O
H
R
5-exo-trig
n = 2
path A
O
O
DABCO
-HNO2
NO2
CO2Et
O
CO2Et
II
H
n
R
I
11
R
NO2
12a or 14
O
NO2
CO2Et
R
DABCO
CO2Et
R
O
n
AcO
O
O
O
6-endo-trig
n = 1
DABCO
-HNO2
O
3
H
H
R
CO2Et
EtO2C
CO2Et
R
path B
NO2
NO2
III
IV
15
Scheme 3. Proposed mechanism for the formation of furans 11, 13, and pyrans 15.
Anticancer: (c) Rao, R. R.; Chaturvedi, V.; Babu, K. S.; Reddy, P. P.; Rao, V. R. S.;
Sreekanth, P.; Sreedhar, A. S.; Rao, J. M. Med. Chem. Res. 2012, 21, 634; Tubulin
polymerization inhibitor: (d) Kerr, D. J.; Hamel, E.; Jung, M. K.; Flynn, B. L.
Bioorg. Med. Chem. 2007, 15, 3290.
Scheme 3). Thus the oxa-Michael addition in III is not to the
,b-unsaturated ester moiety, but to the nitroalkene moiety in a
6-endo-trig fashion. This dramatic change in the mode of cycliza-
tion is attributable to a combination of the geometry of the enolate
arising from III and the superior Michael acceptor ability of nitro-
alkene moiety (Scheme 3).
a
3. For recent reviews, see: (a) Brown, R. C. D. Angew. Chem., Int. Ed. 2005, 44, 850;
(b) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y.; Wong,
H. N. C. Tetrahedron 1998, 54, 1955; (c) Kirsch, S. F. Org. Biomol. Chem. 2006, 4,
2076.
4. (a) Amarnath, V.; Amarnath, K. J. Org. Chem. 1995, 60, 301; (b) Minetto, G.;
Raveglia, L. F.; Sega, A.; Taddei, M. Eur. J. Org. Chem. 2005, 5277.
5. (a) Feist, F. Chem. Ber. 1902, 35, 1537; (b) Benary, E. Chem. Ber. 1911, 44, 489; (c)
Mross, G.; Holtz, E.; Langer, P. J. Org. Chem. 2006, 71, 8045; (d) Ayyagari, N.;
Jose, D.; Mobin, S. M.; Namboothiri, I. N. N. Tetrahedron Lett. 2011, 52, 258.
6. (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed.
2000, 39, 2285; (b) Ma, S.; Zhang, J.; Lu, L. Chem. Eur. J. 2003, 9, 2447; (c)
Marshall, J. A.; Bartley, G. S. J. Org. Chem. 1994, 59, 7169; (d) Dudnik, A. S.;
Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 5195; (e) Hashmi, A. S. K. Angew.
Chem., Int. Ed. 1995, 34, 1581.
7. Reviews: (a) Santamaria, J.; Valdes, C. In Modern Heterocyclic Chemistry,
Alvarez-Builla, J.; Vaquero, J. J.; Barluenga, J., Eds.; 2011, Vol. 3, p 1631.; (b)
Litvinov, Y. M.; Shestopalov, A. M. Adv. Heterocycl. Chem. 2011, 103, 175; (c)
Shestopalov, A. M.; Emel’yanova, Y. M. In Izbrannye Metody Sinteza i Modifikatsii
Geterotsiklov, Kartsev, V. G., ed.; 2003, Vol. 2, p 534.; (d) Martin, N.; Quinteiro,
M.; Seoane, C.; Soto, J. L. Afinidad 1993, 50, 389; (e) Drygina, O. V.; Garnovskii, A.
D. Khimiya Geterotsiklicheskikh Soedinenii 1983, 1011; (f) Seoane, C.; Soto, J. L.;
Quinteiro, M. Heterocycles 1980, 14, 337.
In conclusion, highly regioselective cascade reactions of b-dicar-
bonyl compounds with Morita–Baylis–Hillman acetates of nitroal-
kenes led to functionalized and fused furans and pyrans in high
yield. The reaction mediated by DABCO proceeds in a cascade
Michael–5-exo-trig-oxa-Michael fashion in the case of open chain
and six-membered cyclic b-dicarbonyl compounds to afford fused
furans. On the other hand, a cascade Michael–5-endo-trig-oxa-
Michael reaction takes place in the case of five-membered cyclic
b-dicarbonyl compounds to afford fused 4H-pyrans.
Acknowledgment
I.N.N.N. thanks the DST India for financial assistance. D.K.N.
thanks the CSIR India for a senior research fellowship. The authors
thank the CRNTS, IIT Bombay for selected NMR data.
8. Influenza virus inhibitor: (a) Smith, P. W.; Sollis, S. L.; Howes, P. D.; Cherry, P.
C.; Starkey, I. D.; Cobley, K. N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington,
A. J. Med. Chem. 1998, 41, 787; (b) Plant growth stimulant: Zamocka, J.;
Misikova, E. Slovakia 1995, SK 277932 B6 19950809.; (c) Veverka, M. Chem.
Papers 1992, 46, 206; (d) Vardaro, R. R.; Di Marzo, V.; Marin, A.; Cimino, G.
Tetrahedron 1992, 48, 9561.
Supplementary data
Supplementary data associated with this article can be found, in
9. Hassner, A.; Namboothiri, I. Eds., In Organic Syntheses Based on Name Reactions,
A Practical Guide to 750 Transformations, 3rd ed.; Elsevier: Oxford, UK, 2012.
10. (a) Adam, W.; Berkessel, A. Chem. Ber. 1985, 118, 5018; (b) Shi, J.; Wang, M.; He,
L.; Zheng, K.; Liu, X.; Lin, L.; Feng, X. Chem. Commun. 2009, 4711.
11. Imagawa, H.; Kotani, S.; Nishizawa, M. Synlett 2006, 642.
12. Selected recent reviews: (a) Basavaiah, D.; Veeraraghavaiah, G. Chem. Soc. Rev.
2012, 41, 68; (b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110,
5447; (c) Rios, R. Catal. Sci. Tech. 2012, 2, 267.
13. (a) Deb, I.; Dadwal, M.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2006, 8,
1201; (b) Deb, I.; Shanbhag, P.; Mobin, S. M.; Namboothiri, I. N. N. Eur. J. Org.
Chem. 2009, 4091.
14. (a) Reddy, R. J.; Chen, K. Org. Lett. 2011, 13, 1458; (b) Reddy, R. J.; Lee, P. H.;
Magar, D. R.; Chen, J. H.; Chen, K. Eur. J. Org. Chem. 2012, 353.
15. While proceeding with the submission of this manuscript, we noticed a closely
related work having just appeared: Huang, W.-Y.; Chen, Y.-C.; Chen, K. Chem.
Asian J. 2012, 7, 688.
References and Notes
1. (a) Keay, B. A.; Dibble, P. W. In Comprehensive Heterocyclic Chemistry II;
Katritzky, A. R., Rees, C. W., Sciven, E. F. V., Eds.; Elsevier: Oxford, 1997; Vol. 2, p
395; (b) Donnelly, D. M. X.; Meegan, M. J. In Comprehensive Heterocyclic
Chemistry II; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 4, p
657.
2. Anti-microbial: (a) Zanatta, N.; Alves, S. H.; Coelho, H. S.; Borchhardt, D. M.;
Machado, P.; Flores, K. M.; Silva, F. M.; Spader, T. B.; Santurio, J. M.; Bonacorso,
H. G.; Martins, M. A. P. Bioorg. Med. Chem. 2007, 15, 1947; (b) Khan, M. W.;
Alam, M. J.; Rashid, M. A.; Chowdhury, R. Bioorg. Med. Chem. 2005, 13, 4796;