D.S. Badiger et al. / Journal of Molecular Structure 1019 (2012) 159–165
165
activity compared to the ligand (MIC 12.5–100
quite comparable with standard drugs used.
In general, the activity shown by the compounds against all the
strains varies in the order CA, AN > EC, SM > SA, EF strains. Among
the complexes, Cu(II) complex has shown the maximum activity
against the tested bacterial strains and significant activity against
fungal strains (CA and AN) with an MIC value of 1.6 lg/mL. For
the other complexes, the activity is in the following order
Ni > Co > Zn > Mn complexes.
lg/mL) and are
References
[1] L.A. Saghatforoush, F. Chalabian, A. Aminkhani, G. Karimnezhad, S. Ershad, Eur.
J. Med. Chem. 44 (2009) 4490–4495.
[2] S. Pal, J. Chem. Crystallogr. 30 (2000) 329–333.
[3] E. Kwiatkowski, M. Kwiatkowski, A. Olechnowicz, G. Bandoli, J. Chem.
Crystallogr. 23 (1993) 473–480.
[4] D. Sinha, A.K. Tiwari, S. Singh, G. Shukla, P. Mishra, H. Chandra, A.K. Mishra,
Eur. J. Med. Chem. 43 (2008) 160–165.
[5] H.I. Ugras, I. Basaran, T. Kilic, U. Cakir, J. Heterocycl. Chem. 43 (2006) 1679–
1684.
[6] V. Vajpayee, Y.P. Singh, J. Coord. Chem. 61 (2008) 1622–1634.
[7] C.M. da Silva, D.L. da Silva, V.L. Modolo, R.B. Alves, M.A. de Resend, C.V.B.
Martins, A. de Fatima, J. Adv. Res. 2 (2011) 1–8.
The Mn(II) complex exhibits significant activity against AN with
an MIC of 3.125 lg/mL. Similarly Ni(II), Co(II) and Zn(II) complexes
[8] J. Wang, J. Chem. Crystallogr. 33 (2003) 845–849.
[9] A. Garcia-Raso, J.J. Fiol, F. Badenas, E. Lago, E. Molins, Polyhedron 20 (2001)
2877–2884.
[10] B.K. Santra, P.A.N. Reddy, M. Nethaji, A.R. Chakravarty, Inorg. Chem. 41 (2002)
1328–1332.
[11] P. Mayer, K.C. Potgieter, T.I.A. Gerber, Polyhedron 29 (2010) 1423–1430.
[12] L. Shi, H.M. Ge, S.H. Tan, H.Q. Li, Y.C. Song, H.L. Zhu, Eur. J. Med. Chem. 42
(2007) 558–564.
have shown highest activity against SM, CA and EC strains respec-
tively (Table 3). The antifungal potency of complexes is notewor-
thy against all fungal strains. The increased lipophilic nature of
the complexes may have a pronounced effect on antimicrobial
activity.
[13] T.A. Yousef, G.M. Abu El-Reash, T.H. Rakha, Spectrochim. Acta Part A 83 (2011)
271–278.
4. Conclusion
[14] R.R. Zaky, T.A. Yousef, J. Mol. Struct. 1002 (2011) 76–85.
[15] O. Pouralimardan, A.C. Chamayou, C. Janiak, H.H. Monfared, Inorg. Chim. Acta
360 (2007) 1599–1608.
[16] G.M. Yu, L. Zhao, Y.N. Guo, G.F. Xu, L.F. Zou, J. Tang, Y.H. Li, J. Mol. Struct. 982
(2010) 139–144.
[17] S. Gao, Z.Q. Weng, S.X. Liu, Polyhedron 17 (1998) 3595–3606.
[18] D. Wang, S.X. Liu, Polyhedron 26 (2007) 5469–5476.
[19] D.K. Dey, S.P. Dey, A. Lycka, G.M. Rosair, Polyhedron 30 (2011) 2544–2549.
[20] K.K. Narang, R.A. Lal, Indian J. Chem. 14A (1976) 442–445.
[21] K.K. Narang, U.S. Yadav, Indian J. Chem. 20A (1981) 404–405.
[22] T.M. Aminabhavi, N.S. Biradar, V.L. Roddabasanagoudar, W.E. Rudzinski, D.E.
Hoffman, Inorg. Chim. Acta 121 (1986) L45–L46.
[23] R.S. Hunoor, B.R. Patil, D.S. Badiger, R.S. Vadavi, K.B. Gudasi, V.M.
Chandrashekhar, I.S. Muchchandi, Appl. Organometal. Chem. 25 (2011) 476–
483.
[24] R.S. Hunoor, B.R. Patil, D.S. Badiger, R.S. Vadavi, K.B. Gudasi, P.R. Dandawate,
M.M. Ghaisas, S.B. Padhye, M. Nethaji, Eur. J. Med. Chem. 45 (2010) 2277–
2282.
[25] K.B. Gudasi, R.S. Vadavi, R.V. Shenoy, M.S. Patil, S.A. Patil, M. Nethaji, Trans.
Met. Chem. 30 (2005) 661–668.
[26] K.B. Gudasi, R.S. Vadavi, R.V. Shenoy, S.A. Patil, M. Nethaji, Trans. Met. Chem.
31 (2006) 374–381.
[27] K.B. Gudasi, S.A. Patil, R.S. Vadavi, R.V. Shenoy, M. Nethaji, Trans. Met. Chem.
31 (2006) 586–592.
Methoxysalicylaldehyde-2-aminobenzoylhydrazone (H2L) was
isolated by the condensation of 2-ABH and 3-methoxysalicylalde-
hyde at À5 to 0 °C. The structure of H2L was confirmed by various
spectroscopic techniques. The coordination mode of H2L is well
established from elemental analysis, molar conductivity, IR, NMR,
mass, electronic spectral and thermal studies. These studies indi-
cate that the ligand essentially coordinates in tridentate fashion
with carbonyl oxygen, azomethine nitrogen and phenolic oxygen
via deprotonation except in Cu(II) complex where the ligand coor-
dinates via enolization and deprotonation of amide proton. The
octahedral geometry was assigned for Mn(II), Co(II), Ni(II) and
Zn(II) complexes and square planar for Cu(II) complex. Thus, the li-
gand acts both in monobasic as well as dibasic manner. The tenta-
tive structures for complexes are depicted in Fig. 7a and b.
The H2L and their complexes have been screened for their
in vitro antimicrobial activities. The activity of ligand was en-
hanced on complexation. The increase in activity of the metal com-
plexes was probably due to the greater lipophilic nature of the
complexes. Among the complexes Cu(II) complex has shown high-
est activity. The difference in activity among the tested compounds
may be attributed to the electrostatic nature of ligand and central
metal ion.
[28] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, Pergamon
Press, New York, 1988.
[29] A. Earnshaw, Introduction to Magnetochemistry, Academic Press, London, UK,
1980.
[30] D.S. Badiger, R.S. Hunoor, B.R. Patil, R.S. Vadavi, C.V. Mangannavar, I.S.
Muchchandi, Y.P. Patil, M. Nethaji, K.B. Gudasi, Inorg. Chim. Acta, in press,
doi:10.1016/j.ica.2011.11.063.
Acknowledgments
[31] N. Sathyanarayana, Electronic Absorption Spectroscopy and Related
Techniques, University Press (India) Limited, Hydrabad, 2001.
[32] G. Wilkinson, R.D. Gillard, J.A. McCleverty, first ed., Comprehensive
Coordination Chemistry, vol. 5, Pergamon Press, Oxford, 1987.
[33] Y. Murakami, Y. Matsuda, K. Sakata, Inorg. Chem. 10 (1971) 1728–1734.
[34] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing Company,
New York, 1968.
[35] B.N. Figgis, R.S. Nyholm, J. Chem. Soc. (1958) 4190–4191.
[36] S. Yamada, Coord. Chem. Rev. 1 (1966) 415–437.
[37] N. Raman, S. Ravichandran, C. Thangaraja, J. Chem. Sci. 116 (2004) 215–219.
Authors thank USIC, Karnatak University, Dharwad for spectral
facilities. Thanks are due to Department of Physics, Karnatak
University, Dharwad for magnetic moment measurements and
CDRI, Lucknow for providing FAB mass spectra.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in