2,5-Dihydroxybenzyl and (1,4-Dihydroxy-2-naphthyl)methyl, Novel
Reductively Armed Photocages for the Hydroxyl Moiety
Alexey P. Kostikov and Vladimir V. Popik*
Department of Chemistry, UniVersity of Georgia, Athens, Georgia 30602
ReceiVed July 1, 2007
Irradiation of alcohols, phenols, and carboxylic acids “caged” with the 2,5-dihydroxybenzyl group or its
naphthalene analogue results in the efficient release of the substrate. The initial byproduct of the
photoreaction, 4-hydroxyquinone-2-methide, undergoes rapid tautomerization into methyl p-quinone. The
UV spectrum of the latter is different from that of the caging chromophore, thus permitting selective
irradiation of the starting material in the presence of photochemical products. These photoremovable
protecting groups can be armed in situ by the reduction of photochemically inert p-quinone precursors.
Introduction
Byproducts of the uncaging reaction should ideally be transpar-
ent at the wavelength of irradiation and possess low reactivity.
Photolabile protecting groups (PPG), known as “cages” in
biochemistry, allow for the spatial and temporal control of
substrate release, as well as “reagentless” deprotection.1-3 PPGs
have found numerous applications in biochemistry,3 organic
synthesis,1,2 fabrication of high-density probe arrays (aka
biochips),4 and time-resolved X-ray crystallography.5 To exploit
benefits of photochemical deprotection, the caging group should
comply with the following requirements: high quantum and
chemical yields, as well as a fast rate of substrate release;
substantial absorbance above 300 nm; and good dark stability.
Among common functional groups, alcohols are one of the
most difficult functionalities to cage. Several examples of
successful release of alcohols and carbohydrates caged with
o-nitrobenzyl-based PPGs have been reported.2,6 However,
substrate release can take minutes after irradiation since this
reaction proceeds via several slow dark steps.7 Other common
PPGs, such as 3′,5′-dimethoxybenzoin,8 p-hydroxyphenacyl,9
and a family of cages utilizing photochemical heterolysis of
the C-O bond,10 allow for the rapid release of a substrate but
work well only with good leaving groups and are rarely suitable
for the direct caging of alcohols.11 The quantum and chemical
(1) Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis; Wiley: New York, 1991.
(2) (a) Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol Sci. 2002, 1,
441. (b) Bochet, C.G. J. Chem. Soc., Perkin Trans. 1 2002, 125.
(3) (a) Morrison, H., Ed. Biological Applications of Photochemical
Switches; Wiley: New York, 1993. (b) Goeldner, M., Givens, R., Eds.
Dynamic Studies in Biology; Wiley: Weinheim, Germany, 2005. (c) Mayer,
G.; Heckel, A. Angew. Chem., Int. Ed. 2006, 45, 4900.
(4) (a) Fodor, S. P. A.; Read, J. L.; Pirrung, M. C.; Stryer, L.; Lu, A. T.;
Solas, D. Science 1991, 251, 767. (b) Heller, M. J. Annu. ReV. Biomed.
Eng. 2003, 4, 129. (c) Gao, X.; LeProust, E.; Zhang, H.; Srivannavit, O.;
Gulari, E.; Yu, P.; Nishiguchi, C.; Xiang, Q.; Xiaochuan, Z. Nucleic Acids
Res. 2001, 29, 4744. (d) Lipshutz, R. J.; Fodor, S. P. A.; Gingeras, T. R.;
Lockhart, D. J. Nat. Genet. 1999, 21, 20. (e) Pirrung, M. C.; Fallon, L.;
McGall, G. J. J. Org. Chem. 1998, 63, 241.
(6) (a) Specht, A.; Goeldner, M. Angew. Chem., Int. Ed. 2004, 43, 2008.
(b) Corrie, J. E. T. J. Chem. Soc., Perkin Trans. 1 1993, 2161. (c) Watanabe,
S.; Sueyoshi, T.; Ichihara, M.; Uehara, C.; Iwamura, M. Org. Lett. 2001,
3, 255.
(7) (a) Corrie, J. E. T.; Barth, A.; Munasinghe, V. R. N.; Trentham, D.
R.; Hutter, M. C. J. Am. Chem. Soc. 2003, 125, 8546. (b) Il’ichev, Y. V.;
Schworer, M. A.; Wirz, J. J. Am. Chem. Soc. 2004, 126, 4581.
(8) (a) Sheehan, J. C.; Wilson, R. M.; Oxford, A. W. J. Am. Chem. Soc.
1971, 93, 7222. (b) Givens, R. S.; Athey, P. S.; Matuszewski, B.; Kueper,
L. W., III; Xue, J.-y.; Fister, T. J. Am. Chem. Soc. 1993, 115, 6001.
(9) (a) Givens, R. S.; Park, C.-H. Tetrahedron Lett. 1996, 37, 6259. (b)
Givens, R. S.; Weber, J. F. W.; Conrad, P. G. II; Orosz, G.; Donahue, S.
L.; Thayer, S. A. J. Am. Chem. Soc. 2000, 122, 2687.
(5) (a) Srajer, V.; Teng, T.-Y.; Ursby, T.; Pradervand, C.; Ren, Z.; Adachi,
S.-I.; Schildkamp, W.; Bourgeois, D.; Wulff, M.; Moffat, K. Science 1996,
274, 1726. (b) Schlichting, I.; Almo, S. C.; Rapp, G.; Wilson, K.; Petratos,
K.; Lentfer, A.; Wittinghofer, A.; Kabsch, W.; Pai, E. F.; Petsko, G. A.;
Goody, R. S. Nature 1990, 345, 309.
(10) (a) Chamberlin, J. W. J. Org. Chem. 1966, 31, 1658. (b) Scho¨nleber,
R. O.; Bendig, J.; Hagen, V.; Giese, B. Bioorg. Med. Chem. 2002, 10, 97.
(c) Furuta, T.; Hirayama, Y.; Iwamura, M. Org. Lett. 2001, 3, 1809.
(11) (a) Misetic, A.; Boyd, M. K. Tetrahedron Lett. 1998, 39, 1653. (b)
Coleman, M. P.; Boyd, M. K. Tetrahedron Lett. 1999, 49, 7911.
10.1021/jo701426j CCC: $37.00 © 2007 American Chemical Society
Published on Web 10/25/2007
9190
J. Org. Chem. 2007, 72, 9190-9194