M.M. Ghorab et al. / European Journal of Medicinal Chemistry 53 (2012) 403e407
407
3221 (NH, NH2), 3079 (CH arom.), 2934, 2846 (CH aliph.), 2202
(C^N), 1598 (C]N), 1336, 1169 (SO2). 1H NMR (DMSO-d6)
: 3.80
[s, 3H, OCH3], 4.50 [s, 1H, CH pyran], 6.82e7.81 [m, 14 H,
AreH þ SO2NH2], 8.09 [s, 1H, NH, D2O exchangeable], 8.30 [s, 1H,
CH]N], 9.90 [s, 1H, OH, D2O exchangeable].
a dose level of 8 Gy with a dose rate of 1 Gy/min. The surviving
fraction was measured 1 h after subjection to radiation [35]. The
surviving fractions were expressed as means ꢀ standard error. The
results were analyzed using 1-way ANOVA test and the percentage
of change in the surviving fraction from control for each compound
was calculated considering the control as 100% in the surviving
fraction. The results are given in Table 2.
d
4.1.4.11. 5-((Benzo [1,3-b] dioxol-5-ylmethylene)amino)-6-cyano-
7H-7-(4-methoxyphenyl)-2-(4-sulphamoylphenylamino)pyrano[2,3-
d]thiazole (15). Yield, 71%; m.p.: 122e124 ꢁC. IR (KBr, cmꢂ1): 3333,
3227, 3171 (NH, NH2), 3073 (CH arom.), 2935, 2849 (CH aliph.),
Appendix A. Supplementary material
2206 (C^N), 1597 (C]N), 1333, 1169 (SO2). 1H NMR (DMSO-d6)
d:
Supplementary data related to this article can be found online at
3.80 [s, 3H, OCH3], 4.60 [s, 1H, CH pyran], 6.28 [s, 2H, CH2], 6.61 [d,
2H, J ¼ 6.8 Hz, AreH], 6.92 [d, 2H, J ¼ 6.8 Hz, AreH], 7.08 [d, 2H,
J ¼ 8.5 Hz, AreH at C-6 & C-7], 7.38 [d, 1H, J ¼ 5.0 Hz, AreH at C-4],
7.28 [s, 2H, SO2NH2, D2O exchangeable], 7.58 [d, 2H, J ¼ 7.2 Hz,
AreH], 7.62 [d, 2H, J ¼ 7.2 Hz, AreH], 8.10 [s, 1H, NH, D2O
exchangeable], 8.30 [s, 1H, CH]N].
References
[1] A.E. Boyd III, Diabetes 37 (1988) 847e850.
[2] J. Drews, Science 287 (2000) 1960e1964.
[3] T.H. Maren, Annu. Rev. Pharmacol. Toxicol. 16 (1976) 309e327.
[4] C.T. Supuran, A. Scozzafava, Expert Opin. Ther. Pat. 10 (2000) 575e600.
[5] F. Abbate, A. Casini, T. Owa, A. Scozzafava, C.T. Supuran, Bioorg. Med. Chem.
Lett. 14 (2004) 217e223.
4.2. Biological testing
[6] Z. Huang, Z. Lin, J. Huang, Eur. J. Med. Chem. 36 (2001) 863e872.
[7] M.M. Ghorab, F.A. Ragab, M.M. Hamed, Eur. J. Med. Chem. 44 (2009) 4211e4217.
[8] M.M. Mader, C. Shih, E. Considine, A.D. Dios, C.S. Grossman, P.A. Hipskind,
H.S. Lin, K.L. Lobb, B. Lopez, J.E. Lopez, L.M. Cabrejas, M.E. Richett, W.T. White,
Y.Y. Cheung, Z. Huang, J.E. Reilly, S.R. Dinn, Bioorg. Med. Chem. Lett. 15 (2005)
617e620.
[9] S.A. Rostom, Bioorg. Med. Chem. 14 (2006) 6475e6485.
[10] C.T. Supuran, A. Casini, A. Mastrolorenzo, A. Scozzafava, Mini-Rev. Med. Chem.
4 (2004) 625e632.
[11] A.J. Kivela, J. Kivela, J. Saarnio, S. Parkkila, World J. Gastroenterol. 11 (2005)
155e163.
[12] A. Scozzafava, T. Owa, A. Mastrolorenzo, C.T. Supuran, Curr. Med. Chem.
10 (2003) 925e953.
[13] C.T. Supuran, Nat. Rev. Drug Discov. 7 (2008) 168e181.
[14] C.T. Supuran, A. Scozzafava, Bioorg. Med. Chem. 15 (2007) 4336e4350.
[15] A. Casini, A. Scozzafava, A. Mastrolorenzo, L.T. Supuran, Curr. Cancer Drug
Targets 2 (2002) 55e75.
[16] S. Pastorekova, S. Parkkila, J. Pastorek, C.T. Supuran, J. Enzyme Inhib. Med.
Chem. 19 (2004) 199e229.
[17] F. Saczewski, J. Slawinski, A. Kornicka, Z. Brzozowski, E. Pomarnacka,
A. Innocenti, A. Scozzafava, C.T. Supuran, Bioorg. Med. Chem. Lett. 16 (2006)
4846e4851.
[18] F. Saczewski, A. Innocenti, J. Slawinski, A. Kornicka, Z. Brzozowski,
E. Pomarnacka, A. Scozzafava, C. Temperini, C.T. Supuran, Bioorg. Med. Chem.
16 (2008) 3933e3940.
4.2.1. Materials and methods
The human tumor cell lines [MCF7] were available at the
National Cancer Institute, Cairo, Egypt. Irradiation was performed
in the National Center for Radiation Research and Technology
[NCRRT], Atomic Energy Authority using Gamma cell (137 Cs)
source, Graphpad Prism 5 program was used for the calculation of
the IC50 value and curve fitting (non linear regression).
4.2.2. In vitro anticancer screening
The cytotoxic activity was measured in vitro for the newly
synthesized compounds using the Sulfo-Rhodamine-B stain (SRB)
assay using the method of Skehan et al. [34]. The in vitro anticancer
screening was done at the pharmacology unit, the National Cancer
Institute, Cairo University. Cells were plated in 96-multiwell
microtiter plate (104 cells/well) for 24 h before treatment with
the compound(s) to allow attachment of cell to the wall of the plate.
Test compounds were dissolved in DMSO and diluted with saline to
the appropriate volume.
Different concentrations of the compound under test (10, 25, 50
and 100 mM) were added to the cell monolayer. Triplicate wells
[19] M. Lopez, L.F. Bornaghi, A. Innocenti, D. Vullo, S.A. Charman, C.T. Supuran,
S.A. Poulsen, J. Med. Chem. 53 (2010) 2913e2926.
were prepared for each individual dose. Monolayer cells were
incubated with the compound(s) for 48 h at 37 ꢁC and in atmo-
sphere of 5% CO2. After 48 h, cells were fixed, washed, and stained
for 30 min with 0.4% (wt/vol) with SRB dissolved in 1% acetic acid.
Excess unbound dye was removed by four washes with 1% acetic
acid and attached stain was recovered with TriseEDTA buffer. Color
intensity was measured in an enzyme-linked immunosorbent assay
ELISA reader. The relation between surviving fraction and drug
concentration is plotted to get the survival curve for breast tumor
cell line after the specified time [34]. The molar concentration
required for 50% inhibition of cell viability (IC50) was calculated and
the results are given in Table 1.
The relationship between surviving fraction and drug concen-
tration was plotted to obtain the survival curve of breast cancer cell
line [MCF7]. The response parameter calculated was IC50 value,
which corresponds to the concentration required for 50% inhibition
of cell viability.
[20] W.R. Chegwidden, I.M. Spencer, Inflammopharmacology 3 (1995) 231e239.
[21] A. Kamal, M.N.A. Khan, K.S. Reddy, K. Rohini, Bioorg. Med. Chem. 15 (2007)
1004e1013.
[22] R.A. Finch, K. Shyam, G.P. Penketh, C.A. Sartorelli, Cancer Res. 61 (2001)
3033e3038.
[23] F. Giles, S. Verstovesk, D. Thomas, S. Gerson, J. Cortes, S. Fader, A. Ferrajoli,
F. Ravandi, S. Kornblau, M.G. Garcia, E. Jabbour, S. Obrien, V. Karsten, A. Cahill,
K. Yee, M. Albitar, M. Sznol, H. Kantarjian, Clin. Cancer Res. 11 (2005)
7817e7824.
[24] W. Loh, L.A. Cosby, A.C. Sartorelli, J. Med. Chem. 23 (1980) 631e634.
[25] S.M. Cohen, E. Erturk, J.M. Price, G.T. Bryan, Cancer Res. 30 (1970) 897e901.
[26] M. Siavosh, S. Andreas, H. Heymo, E. Emerich, B. Thomas, S. Mathias,
M. Thomas, S.F. Josef, B.L. Thomas, J. Med. Chem. 49 (2006) 5769e5776.
[27] M.M. Ghoraba, F.A. Ragab, H.I. Heiba, R.M. El-Hazek, Eur. J. Med. Chem.
46 (2011) 5120e5126.
[28] D.A. Abou El Ella, M.M. Ghorab, H.I. Heiba, A.M. Soliman, Med. Chem. Res. doi:
[29] M.M. Ghorab, M.A. Shaaban, H.M. Refaat, H.I. Heiba, S.S. Ibrahim, J. Mater. Sci.
Eng. B1 (2011) 747e758.
[30] R. Mladenova, M. Ignatova, N. Manolova, T. Petrova, I. Rashkov, Eur. Polym. J.
38 (2002) 989e999.
[31] O.M. Walsh, M.J. Meegan, R.M. Prendergast, T.A. Nakib, Eur. J. Med. Chem.
31 (1996) 989e999.
[32] M.M. Ghorab, E. Noaman, M.M. Ismail, H.I. Heiba, Y.A. Ammar, M.Y. Sayed,
Arzneimittelforschung 56 (2006) 405e413.
[33] H. Yoshino, N. Ueda, J. Niijima, H. Sugumi, Y. Kotake, N. Koyanagi,
K. Yoshimatsu, M. Asada, T. Watanabe, T. Nagasu, K. Tsukahara, A. Iijima,
K. Kitoh, J. Med. Chem. 35 (1992) 2496e2497.
[34] P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T. Warren,
H. Bokesch, S. Kenney, M.R. Boyd, J. Natl. Cancer Inst. 82 (1990) 1107e1112.
[35] C. Geng, Z. Zeng, J. Wang, S. Xuan, C. Lin, World J. Gastroenterol. 11 (2005)
2990e2993.
4.2.3. Radiosensitizing activity
The most active compounds 4, 6e8 and 11 resulted from the
in vitro anticancer screening, were selected for further screening
in combination with
This study was conducted to evaluate the ability of the most
biologically active compounds to enhance the cell killing effect of
radiation. Cells were subjected to a single dose of -radiation at
g-radiation.
g-
g