3508
S. Helbig et al. / Tetrahedron Letters 53 (2012) 3506–3509
substrate on the si-site to the Rh-center should lead to enantiome-
rically pure ketone products (S)-6 (for a mechanistic proposal see
Supplementary data). Flat aryl substituents in (3aR,6aR)-1a,c,d
are presumably most suited to provide smooth coordination of
the enone to the Rh-center. In contrast, the nonplanar benzyl group
in ligand (3aR,6aR)-1b might shield the Rh-center from coordina-
tion with an enone substrate, which could be a reason for the
low catalytic activity and enantioselectivity of the ligand.
References and notes
1. Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125,
11508–11509.
2. Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126,
1628–1629.
3. Maire, P.; Deblon, S.; Breher, F.; Geier, J.; Böhler, C.; Rüegger, H.; Schönberg, H.;
Grützmacher, H. Chem. Eur. J. 2004, 10, 4198–4205.
4. Reviews: (a) Glorius, F. Angew. Chem. 2004, 116, 3444–3446; Angew. Chem. Int.
Ed. 2004, 43, 3364–3366; (b) Johnson, J. B.; Rovis, T. Angew. Chem. 2008, 120,
852–884. Angew. Chem. Int. Ed. 2008, 47, 840–871; (c) Defieber, C.;
Grützmacher, H.; Carreira, E. M. Angew. Chem. 2008, 120, 4558–4579; Angew.
Chem. Int. Ed. 2008, 47, 4482–4502; (d) Feng, C.-C.; Xu, M. H.; Lin, G.-Q. Synlett
2011, 1345–1356; (e) Shintani, R.; Hayashi, T. Aldrichimica Acta 2009, 42, 31–
38.
5. (a) Shao, C.; Yu, H.-J.; Wu, N.-Y.; Tian, P.; Wang, R.; Feng, C.-G.; Lin, G.-Q. Org.
Lett. 2011, 13, 788–791; (b) Nishimura, T.; Kasai, A.; Nagaosa, M.; Hayashi, T.
Chem. Commun. 2011, 10488–10490; (c) Wei, W. T.; Yeh, J.-Y.; Kuo, T.-S.; Wu,
H.-L. Chem. Eur. J. 2011, 17, 11405–11409; (d) Saxena, A.; Lam, H. W. Chem. Sci.
2011, 2, 2326–2331; (e) Li, Q.; Dong, Z.; Yu, Z.-X. Org. Lett. 2011, 13, 1122–
1125; (f) Shintani, R.; Hayashi, T. Org. Lett. 2011, 13, 350–352; (g) Pattison, G.;
Piraux, G.; Lam, H. W. J. Am. Chem. Soc. 2010, 132, 14373–14375; (h) Wang, Z.-
Q.; Feng, C.-G.; Zhang, S.-S.; Xu, M.-H.; Lin, G.-Q. Angew. Chem. 2010, 122, 5916–
5919; Angew. Chem. Int. Ed. 2010, 49, 5780-5783; (i) Luo, Y.; Carnell, A. J. Angew.
Chem. 2010, 122, 2810–2814; Angew. Chem. Int. Ed. 2010, 49, 2750-2754; (j)
Gendrineau, T.; Genet, J.-P.; Darses, S. Org. Lett. 2010, 12, 308–310; (k) Frost, C.
G.; Edwards, H. J.; Penrose, S. D.; Gleave, R. Synthesis 2010, 3243–3247; (l)
Shintani, R.; Tsutsumi, Y.; Nagaosa, M.; Nishimura, T.; Hayashi, T. J. Am. Chem.
Soc. 2009, 131, 13588–13589; (m) Gendrineau, T.; Chuzel, O.; Eijsberg, H.;
Genet, J.-P.; Darses, S. Angew. Chem. 2008, 120, 7783–7786; Angew. Chem. Int.
Ed. 2008, 47, 7669-7672; (n) Feng, C.-G.; Zhi-Qieu, T.; Tian, P.; Xu, M.-H.; Lin,
G.-Q. Chem. Asian J. 2008, 3, 1511–1516; (o) Okamoto, K.; Hayashi, T.; Rawal, V.
H. Org. Lett. 2008, 10, 4387–4389; (p) Feng, C.-G.; Wang, Z.-Q.; Shao, C.; Xu, M.-
H.; Liu, G.-Q. Org. Lett. 2008, 10, 4101–4104; (q) Sörgel, S.; Tokunaga, N.; Sasaki,
K.; Okamoto, K.; Hayashi, T. Org. Lett. 2008, 10, 589–592; (r) Berthon-Gelloz, G.;
Hayashi, T. J. Org. Chem. 2006, 71, 8957–8960.
Considering the size of the molecule and distribution of electron
density, (Z)-prop-1-enylboronic acid
7 differs markedly from
2-phenylvinyl analogue 5. The presence of the electron-donating
Me-substituent seems to slow down the rate of reaction between
boronic acid 7 and cyclopentenone 4a (see above). In the same
time, due to the small size of the propenyl moiety, the rate of
Z/E-isomerization in the (Z)-prop-1-enyl group coordinated to the
Rh-center is not affected by the bulky substituents of the chiral ole-
finic ligand. Consequently, appearance of the E-oriented ketone
products could be expected in this situation, with a Z/E ratio con-
trolled by the steric size of the boronic acid and almost indepen-
dent from the bulkiness of the olefinic ligand. This was observed
in our experiments. The reactions with rather bulky (E)-phen-
ylethenylboronic acid 5 showed no sign of E/Z-isomerization. In
the Rh-catalyzed addition of (Z)-propenylboronic acid 7 to cyclo-
pentenone 4a, mixtures of Z/E-products (Z)-8 and (E)-8 have been
obtained in the presence of ligands 1a–d (Table 2). The use of dif-
ferent substituted ligands 1a–1d, led to only a small change in the
content of E-isomer (between 23% and 31%).
In conclusion tetrahydropentalene-derived Rh catalysts showed
high catalytic activity and stereoselectivity for 1,4-conjugate
addition of (E)-2-phenylethenylboronic acid 5 to cyclic enone sub-
strates 4a–c. Several factors affect the selectivity and productivity
of the process. The electronic nature of aryl substituents in the li-
gand framework has only little influence on the stereocontrol of
the addition reaction. Conversely, steric factors have a considerable
effect on enantiomeric purity and yield of the reaction. The ligand
with nonplanar benzyl substituents was less efficient and selective
than tetrahydropentalenes bearing planar aryl groups. Enantiose-
lectivity and productivity of the Rh-catalyst are also dependent
on the ring size of the cyclic substrate. The enantioselectivity also
depends considerably on the nature of the used boronic acid. (E)-2-
phenylethenylboronic acid 5 gave substituted ketones with quite
high enantiomeric purity and yields. In contrast, the addition of
(Z)-prop-1-enyl boronic acid 7 occurred with reduced enantiose-
lectivity and was accompanied by Z/E-isomerization of the prop-
1-enyl group. Based on the obtained knowledge, directed synthesis
of b-substituted ketones could be performed with required selec-
tivity by gentle tuning in the structure of the ligand, substrate, or
used organoboronic acid. This should expand the applicability of
the Rh-catalyzed 1,4-conjugate addition to the synthesis of chiral
complex organic molecules.
6. (a) Nishimura, T.; Noishiki, A.; Hayashi, T. Chem. Commun. 2012, 973–975; b)
Nishimura, T.; Yasuhara, Y.; Sawano, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132,
7872–7873.
7. (a) Shintani, R.; Takeda, M.; Soh, Y.-T.; Ito, T.; Hayashi, T. Org. Lett. 2011, 13,
2977–2979; (b) Cui, Z.; Yu, H.-J.; Yang, R.-F.; Gao, W.-Y.; Feng, C.-G.; Lin, G.-Q. J.
Am. Chem. Soc. 2011, 133, 12394–12397; (c) Yang, H.-Y.; Xu, M.-H. Chem.
Commun. 2010, 46, 9223–9225; (d) Shintani, R.; Takeda, M.; Tsuji, T.; Hayashi,
T. J. Am. Chem. Soc. 2010, 132, 13168–13169; (e) Shintani, R.; Soh, Y.-T.;
Hayashi, T. Org. Lett. 2010, 12, 4106–4109; (f) Shao, C.; Yu, H.-J.; Wu, N.-Y.;
Feng, C.-G.; Lin, G.-Q. Org. Lett. 2010, 12, 3820–3823; (g) Okamoto, K.; Hayashi,
T.; Rawal, V. H. Chem. Commun. 2009, 4815–4817; (h) Wang, L.; Wang, Z.-Q.;
Xu, M.-H.; Lin, G.-Q. Synthesis 2010, 3263–3267.
8. Shintani, R.; Sannoha, Y.; Tsuji, T.; Hayashi, T. Angew. Chem. 2007, 119, 7415–
7418; Angew. Chem. Int. Ed. 2007, 46, 7277-7280.
9. Zhang, S.-S.; Wang, Z.-Q.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2010, 12, 5546–5549.
10. Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc.
2005, 127, 54–55.
11. (a) Nishimura, T.; Maeda, Y.; Hayashi, T. Org. Lett. 2011, 13, 3674–3677; (b)
Nishimura, T.; Kawamoto, T.; Nagarosa, M.; Kumamoto, H.; Hayashi, T. Angew.
Chem. 2010, 122, 1682–1685; Angew. Chem. Int. Ed. 2010, 49, 1638-1641.
12. (a) Punniyamurthy, T.; Mayr, M.; Dorofeev, A. S.; Bataille, C. J. R.; Gosiewska, S.;
Nguyen, B.; Cowly, A. R.; Brown, J. M. Chem. Commun. 2008, 5092–5094; (b)
Aikawa, K.; Takahayashi, Y.; Kawauchi, S.; Mikami, K. Chem. Commun. 2008,
5095–5097.
13. (a) Ichikawa, Y.; Nishimura, T.; Hayashi, T. Organometallics 2011, 30, 2342–
2348; (b) Nishimura, T.; Ichikawa, Y.; Hayashi, T.; Onishi, N.; Shiotsuki, M.;
Masuda, T. Organometallics 2009, 28, 4890–4893.
14. (a) Trost, B. M.; Burns, A. C.; Tautz, T. Org. Lett. 2011, 13, 4566–4569; (b) Hu, X.;
Zhuang, M.; Cao, Z.; Du, H. Org. Lett. 2009, 11, 4744–4747.
15. (a) Wawzonek, S. J. Am. Chem. Soc. 1943, 65, 839–843; (b) Quast, H.; Carlsen, J.;
Herkert, T.; Janiak, R.; Röschert, H.; Peters, E.-M.; Peters, K.; von Schnering, H.
G. Liebigs Ann. Chem. 1992, 495–511.
Acknowledgments
16. Helbig, S.; Sauer, S.; Cramer, N.; Laschat, S.; Baro, A.; Frey, W. Adv. Synth. Catal.
2007, 349, 2331–2337.
17. Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336–
5337.
18. Trinkado, M.; Ellman, J. A. Angew. Chem. 2008, 120, 5705–5708; Angew. Chem.
Int. Ed. 2008, 47, 5623-5626.
19. The use of enantiomerically pure 3-(2-phenylvinyl)cyclohexanone in total
synthesis of phoslactomycin A, see König, C. M.; Gebhardt, B.; Schleth, C.;
Dauber, M.; Koert, U. Org. Lett. 2009, 11, 2728–2731.
Generous financial support by the Deutsche Forschungsgeme-
inschaft (DFG), the Fonds der Chemischen Industrie, the
Ministerium für Wissenschaft, Forschung und Kunst des Landes
Baden-Württem berg is gratefully acknowledged. We would like
to thank Umicore, Hanau for donation of Rh-precursors. We are
grateful to Inga Loke and Tanja Heidt for skillful technical assistance.
20. (a) Hafner, C.; Alexakis, A. Chem. Commun. 2010, 46, 7295–7306; (b) Shintani,
R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem. 2005, 117,
4687–4690; Angew. Chem. Int. Ed. 2005, 44, 4611-4614; (c) Kina, A.; Ueyama,
K.; Hayashi, T. Org. Lett. 2005, 7, 5889–5892; (d) Hahn, B. T.; Tewes, F.; Fröhlich,
R.; Glorius, F. Angew. Chem. 2010, 122, 1161–1164; Angew. Chem. Int. Ed. 2010,
49, 1143-1146; (e) Shintani, R.; Ueyama, K.; Yamada, I.; Hayashi, T. Org. Lett.
2004, 6, 3425–3427; (f) Defieber, C.; Paquin, J.-F.; Serna, S.; Carreira, E. M. Org.
Lett. 2004, 6, 3873–3876; (g) Chen, F.-X.; Kina, A.; Hayashi, T. Org. Lett. 2006, 8,
Supplementary data
Supplementary data associated with this article can be found, in