´
801
G. Mloston et al. / Tetrahedron: Asymmetry 23 (2012) 795–801
4.13. X-ray crystal-structure determination of 7b
References
1. Parts of the planned PhD theses of A. M. P and A. W., University of Lodz.
All measurements were made on an Agilent Technologies
2. (a) Zhang, S.; Wang, W. In ‘Privileged Chiral Ligands and Catalysts’; Zhou, Q.-L.,
Ed.; Wiley-VCH: Weinheim, 2011; pp 409–445; (b) List, B. Angew. Chem., Int. Ed.
2010, 49, 1730–1734.
SuperNova area-detector diffractometer19 using CuK radiation
a
(k = 1.54184 Å) from a micro-focus X-ray source and an Oxford
Instruments Cryojet XL cooler. The data collection and refinement
parameters are given below20 and a view of the molecule is shown
in Figure 1. Data reduction was performed with CrysAlisPro.19 The
intensities were corrected for Lorentz and polarization effects, and
an empirical absorption correction using spherical harmonics19
was applied. Equivalent reflections, other than Friedel pairs, were
merged. The structure was solved by direct methods using SHEL-
XS97,21 which revealed the positions of all non-hydrogen atoms.
The non-hydrogen atoms were refined anisotropically. The amine
H-atom was placed in the position indicated by a difference elec-
tron density map and its position was allowed to refine together
with an isotropic displacement parameter. All remaining H-atoms
were placed in geometrically calculated positions and refined by
using a riding model where each H-atom was assigned a fixed iso-
tropic displacement parameter with a value equal to 1.2 Ueq of its
parent C-atom. The refinement of the structure was carried out on
3. Hassan, A. A.; Shawky, A. M. J. Heterocycl. Chem. 2010, 47, 745–763.
4. Narasimhan, B.; Kumar, P.; Sharma, D. Acta Pharm. Sci. 2010, 52, 169–180.
5. Rollas, M.; Kuçukguzel, Sß. G. Molecules 2007, 12, 1910–1939.
6. Meyer, H.; Malley, J. Monatsh. Chem. 1912, 33, 393–414.
7. (a) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-
D. J. Am. Chem. Soc. 2003, 125, 5262–5263; (b) Tang, Z.; Jiang, F.; Cui, X.; Gong,
L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
5755–5760; (c) Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-
}
}
}
ˇ
Z.; Gong, L.-Z. J. Am. Chem. Soc. 2005, 127, 9285–9289; (d) Meciarová, M.;
Hubinská, K.; Toma, Š.; Koch, B.; Berkessel, A. Monatsh. Chem. 2007, 138, 1181–
´
1186; (e) Gryko, D.; Zimnicka, M.; Lipinski, R. J. Org. Chem. 2007, 72, 964–970;
(f) Gryko, D.; Lipin´ ski, R. Eur. J. Org. Chem. 2006, 3864–3876; (g) Gryko, D.;
´
´
Chrominski, M.; Pielacinska, D. J. Symmetry 2011, 3, 265–282.
8. (a) Nurdinov, R.; Liepinsh, E. E.; Mazheika, I. B.; Kalvinsh, I. Ya. Khim. Geterotsikl.
Soedin. 1993, 1277–1282. Engl. Transl. 1093–1098; (b) Nurdinov, R.; Liepinsh, E.
E.; Mazheika, I. B.; Kalvinsh, I. Ya. Khim. Geterotsikl. Soedin. 1993, 1415–1421.
Engl. Transl. 1215–1221.
9. Martinez-Diaz, V.; de Mendoza, J.; Santos, F.; Torres, T. Tetrahedron: Asymmetry
1994, 5, 1291–1296.
10. Cavé, C.; Galons, H.; Miocque, M.; Rinjard, P.; Tran, G.; Binet, P. Eur. J. Med.
Chem. 1994, 29, 389–392.
11. Kudelko, A.; Zielinski, W.; Ejsmont, K. Tetrahedron 2011, 67, 7838–7845.
12. (a) Zadel, G.; Breitmaier, E. Chem. Ber. 1994, 127, 1323–1326; (b) Nakamura, D.;
Kakiuchi, K.; Koga, K.; Shirai, R. Org. Lett. 2006, 8, 6139–6142; (c) Tang, H.;
Zhao, G.; Zhou, Z.; Gao, P.; He, L.; Tang, Ch. Eur. J. Org. Chem. 2008, 126–135; (d)
Hu, X.; Shan, Z.; Li, W. J. Fluorine Chem. 2010, 131, 505–509; (e)
Gnanaprakasam, B.; Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem.
Int. Ed. 2011, 50, 12240–12244.
F2 by using full-matrix least-square procedures, which minimized
2
the function
R
wðF2o ꢀ F2c Þ . A correction for secondary extinction
was not applied. Refinement of the absolute structure parameter22
yielded a value of ꢀ0.0(2), while the Hooft analysis23 gave
y = 0.07(5), P2 = 1.000, and P3 = 0.000, which confidently confirms
that the refined coordinates represent the true enantiomorph. Neu-
tral atom scattering factors for non-H-atoms were taken from the
literature,24 and the scattering factors for H-atoms were also taken
from the literature.25 Anomalous dispersion effects were included
in Fc;26 the values for f0 and f00 were those of ref.27 The values of
the mass attenuation coefficients are those of the literature.28 All
calculations were performed using the SHELXL9721 program.
Crystal data for 7b: C17H19N3O2, M = 297.36, crystallized from
isopropanol, colorless, prism, crystal dimensions 0.15 ꢃ 0.22 ꢃ
0.25 mm, monoclinic, space group P21, Z = 2, reflections for cell
determination 6644, 2h range for cell determination 6–153°,
a = 5.54324(6) Å, b = 10.11476(12) Å, c = 14.24604(17) Å, b =
13. (a) Mloston´ , G.; Pieczonka, A. M.; Kowalczyk, E.; Linden, A.; Heimgartner, H.
´
Helv. Chim. Acta 2011, 94, 1764–1777; (b) Pieczonka, A. M.; Mloston, G.;
Heimgartner, H. Helv. Chim. Acta 2012, 95, 404–414.
´
14. (a) Kwiatkowski, P.; Mucha, P.; Mloston, G.; Jurczak, J. Synlett 2009, 1757–
1760; (b) Mloston´ , G.; Mucha, P.; Heimgartner, H. Lett. Org. Chem. 2012, 9, 89–
91.
15. Deep, A.; Jain, S.; Sharma, P. Ch.; Verma, P.; Kumar, M.; Dora, Ch. P. Acta Pol.
Pharma. – Drug Res. 2010, 67, 255–259.
16. Lloyd, J.; Finlay, H. J.; Vacarro, W.; Hyunh, T.; Kover, A.; Bhandura, R.; Yan, L.;
Atwal, K.; Conder, M. L.; Jenkins-West, T.; Shi, H.; Huang, C.; Li, D.; Sun, H.;
Levesque, P. Bioorg. Med. Chem. Lett. 2010, 20, 1436–1439.
17. Johnson, C. K. ‘ORTEP II, Report ORNL-5138’, Oak Ridge National Laboratory,
Oak Ridge, Tennessee, 1976.
18. Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L. Angew. Chem., Int. Ed. Engl.
1995, 34, 1555–1573.
19. CrysAlisPro, Version 1.171.35.21, Agilent Technologies, Yarnton, Oxfordshire,
England, 2012.
97.5394(11), V = 791.849(16) Å3, T = 160(1) K, DX = 1.247 g cmꢀ3
,
l
(CuK ) = 0.675 mmꢀ1, scan type
x
, 2h(max) = 153.5°, transmission
a
20. CCDC-879024 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge Crystallographic
factors (min; max) = 0.887; 1.000, total reflections measured
8322, symmetry independent reflections 3035, reflections with I
21. Sheldrick, G. M. Acta Crystallogr. Sect. A 2008, 64, 112–122.
22. (a) Flack, H. D.; Bernardinelli, G. Acta Crystallogr. Sect. A 1999, 55, 908–915; (b)
Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143–1148.
23. (a) Hooft, R. W.; Straver, L. H.; Spek, A. L. J. Appl. Crystallogr. 2008, 41, 96–103;
(b) Hooft, R. W.; Straver, L. H.; Spek, A. L. J. Appl. Crystallogr. 2010, 43, 665–668.
24. Maslen, E. N.; Fox, A. G.; O’Keefe, M. A. In International Tables for
Crystallography; Wilson, A. J. C., Ed.; Kluwer Academic Publishers: Dordrecht,
1992; Vol. C, pp 477–486. Table 6.1.1.1.
>2r(I) 2996, reflections used in refinement 3035, parameters re-
fined 203, restraints 1; R(F) [I >2
r
(I) reflections] = 0.0286, wR(F2)
2
[all data] = 0.0800 (w ¼ ½r2ðFo2Þ þ ð0:0511PÞ þ 0:0771Pꢁꢀ1, where
P ¼ ðF2o þ 2Fc2Þ=3), goodness of fit 1.034, final Dmax
/r 0.001, Dq
(max; min) = 0.15; ꢀ0.10 e Åꢀ3
.
25. Creagh, D. C.; McAuley, W. J. In International Tables for Crystallography; Wilson,
A. J. C., Ed.; Kluwer Academic Publishers: Dordrecht, 1992; Vol. C, pp 219–222.
Table 4.2.6.8.
Acknowledgments
26. Creagh, D. C.; Hubbell, J. H. In International Tables for Crystallography; Wilson, A.
J. C., Ed.; Kluwer Academic Publishers: Dordrecht, 1992; Vol. C, pp 200–206.
Table 4.2.4.3.
27. Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175–
3187.
The authors thank PD Dr. L. Bigler, University of Zürich, for ESI-
HRMS. A.M.P. is grateful for financial support within the project
European Social Fund ‘HUMAN—BEST INVESTMENT!’, co-funded by
the European Union.
28. Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781–782.