10.1002/adsc.202000211
Advanced Synthesis & Catalysis
asymmetric
syntheses
of
marketed
drugs
10958-10961; b) L. Li, S. Zhao, A. Joshi-Pangu, M.
Diane, M. R. Bisco, J. Am. Chem. Soc. 2014, 136,
14027-14030; c) L. Li, C.-Y. Wang, R. Huang, M. R.
Bisco, Nat. Chem. 2013, 5, 607-612; d) Q. Zhou, H. D.
Srinivas, S. Dasgupta, M. P. Watson, J. Am. Chem. Soc.
2013, 135, 3307-3310; e) G. A. Molander, S. R.
Wisniewski, J. Am. Chem. Soc. 2012, 134, 16856-
16868; f) T. Ohmura, T. Awano, M. Suginome, J. Am.
Chem. Soc. 2010, 132, 13191-13193.
dexchlorpheniramine and dexbrompheniramine. The
chiral azaarene building blocks produced from the
method we describe may find broad utility in drug
discovery endeavors.
Experimental Section
A general procedure for the rhodium-catalyzed asymmetric
conjugate addition reaction: [RhCl(coe)2]2 (1.4 mg, 2
mol % Rh) and (R)-DM-segphos (3.5 mg, 2.4 mol %) were
placed in an oven-dried Schlenk tube under nitrogen. THF
(0.6 mL) was added, and the mixture was stirred at room
temperature for 30 min. Then azaarene substrate 1 (0.20
mmol), organoboronic acids 2, aqueous KOH (5 mol %,
0.10 mL, 0.10 M), and another portion of THF (0.4 mL)
were added under nitrogen. The resulting mixture was
stirred at 80 ℃ for 12 h. Upon completion, the reaction
mixture was diluted with EtOAc (5 mL) and water (5 mL).
The layers were separated, and the aqueous layer was
extracted again with EtOAc for two more times (5 mL × 2).
The combined organic layers were then concentrated in
vacuo, and the residue was purified by silica gel
chromatography eluting with petroleum ether/EtOAc to
give the product.
[6] For examples on catalytic asymmetric cross-coupling,
see: a) M. W. Gribble, Jr., S. Guo, S. L. Buchwald, J.
Am. Chem. Soc. 2018, 140, 5057-5060; b) G. J.
Lovinger, M. D. Aparece, J. P. Morken, J. Am. Chem.
Soc. 2017, 139, 3153-3160; c) S. Yu, H. L. Sang, S. Ge,
Angew. Chem. Int. Ed. 2017, 56, 15896-15900; Angew.
Chem. 2017, 129, 16112-16116; d) P. Schäfer, T.
Palacin, M. Sidera, S. P. Fletcher, Nat. Commun. 2017,
8, 15762-15769; e) S. D. Friis, M. T. Pirnot, S. L.
Buchwald, J. Am. Chem. Soc. 2016, 138, 8372-8375; f)
N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2015,
137, 10480-10483; g) B. Chen, P. Cao, X. Yin, Y. Liao,
L. Jiang, J. Ye, M. Wang, J. Liao, ACS Catal. 2017, 7,
2425-2429.
[7] a) R. S. J. Proctor, R. J. Phipps, Angew. Chem. Int. Ed.
2019, 58, 13666-13699; Angew. Chem. 2019, 131,
13802-13837; b) R. S. J. Proctor, H. J. Davis, R. J.
Phipps, Science 2018, 360, 419-422.
Acknowledgements
We are grateful for the financial support from the “Double First-
Class” University project (CPU2018GY35) of China
Pharmaceutical University.
[8] a) W.-B. Zhang, X.-T. Yang, J.-B. Ma, Z.-M. Su, S.-L.
Shi, J. Am. Chem. Soc. 2019, 141, 5628-5634; b) B. M.
Trost, Z. Jiao, C.-I. Hung, Angew. Chem. Int. Ed. 2019,
58, 15154-15158; Angew. Chem. 2019, 131, 15298-
15302; c) A. Motaleb, S. Rani, T. Das, R. G. Gonnade,
P. Maity, Angew. Chem. Int. Ed. 2019, 58, 14104-
14109; Angew. Chem. 2019, 131, 14242-14247; d) X.-J.
Dai, O. D. Engl, T. León, S. L. Buchwald, Angew.
Chem. Int. Ed. 2019, 58, 3407-3411; Angew. Chem.
2019, 131, 3445-3449; e) R. Murakami, K. Sano, T.
Iwai, T. Taniguchi, K. Monde, M. Sawamura, Angew.
Chem. Int. Ed. 2018, 57, 9465-9469; Angew. Chem.
2018, 130, 9609-9613; f) Q. Hu, A. Kondoh, M. Terada,
Chem. Sci. 2018, 9, 4348-4351; g) M. Meazza, F. Tur,
N. Hammer, K. A. Jørgensen, Angew. Chem. Int. Ed.
2017, 56, 1634-1638; Angew. Chem. 2017, 129, 1656-
1660; h) J. Izquierdo, A. Landa, I. Bastida, R. López,
M. Oiarbide, C. Palomo, J. Am. Chem. Soc. 2016, 138,
3282-3285; i) G. Song, W. W. N. O., Z. Hou, J. Am.
Chem. Soc. 2014, 136, 12209-12212.
References
[1] a) E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med.
Chem. 2014, 57, 10257-10274; b) R. D. Taylor, M.
MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57,
5845-5859; c) L. D. Pennington, D. T. Moustakas J.
Med. Chem. 2017, 60, 3552-3579.
[2] a) F. Lovering, J. Bikker, C. Humblet, J. Med. Chem.
2009, 52, 6752-6756; b) Chiral Drugs: Chemistry and
Biological Action (Eds.: G.-Q. Lin, Q.-D. You, J.-F.
Cheng), Wiley, Hoboken, 2011; c) D. Saha, A.
Kharbanda, W. Yan, N. R. Lakkaniga, B. Frett, H.-Y.
Li, J. Med. Chem. 2020, 63, 441-469.
[3] Development of New Stereoisomeric Drugs,
Food & Drug Administration, 1992.
U.S.
[9] a) K. Zheng, X. Liu, X. Feng, Chem. Rev. 2018, 118,
7586-7656; b) Catalytic Asymmetric Conjugate
Reactions (Ed.: A. Córdova), Wiley-VCH: Weinheim,
2010.
[4] For selected examples, see: a) T. Ohkuma, M.
Koizumi, M. Yoshida, R. Noyori, Org. Lett. 2000, 2,
1749-1751; b) L. Rupnicki, A. Saxena, H. W. Lam, J.
Am. Chem. Soc. 2009, 131, 10386-10387; c) C. Guo,
D.-W. Sun, S. Yang, S.-J. Mao, X.-H. Xu, S.-F. Zhu,
Q.-L. Zhou, J. Am. Chem. Soc. 2015, 137, 90-93; d) B.
Qiao, C. Li, X. Zhao, Y. Yin, Z. Jiang, Chem. Commun.
2019, 55, 7534-7537; e) Y. Lebedev, I. Polishchuk, B.
Maity, M. D. V. Guerreiro, L. Cavallo, M. Rueping, J.
Am. Chem. Soc. 2019, 141, 19415-19423.
[10] For a pertinent review, see: D. Best, H. W. Lam, J.
Org. Chem. 2014, 79, 831-845.
[11] For examples on asymmetric -selective addition to
alkenyl azaarenes, see: a) R. P. Jumde, F. Lanza, M. J.
Veenstra, S. R. Harutyunyan, Science 2016, 352, 433-
437; b) R. P. Jumde, F. Lanza, T. Pellegrini, S. R.
Harutyunyan, Nat. Commun. 2018, 8, 2058-2067; c) F.
Lied, H. B. Žugelj, S. Kress, B. Štefane, F. Glorius, M.
[5] For examples on cross-coupling using stoichiometric
amount of optically pure reagent, see: a) J. Llaveria, D.
Leonori, V. K. Aggarwal, J. Am. Chem. Soc. 2015, 137,
5
This article is protected by copyright. All rights reserved.