K. S. Levchenko et al. / Tetrahedron Letters 53 (2012) 3630–3632
3631
O
O
O
O
N
N
(i)
(iii)
(ii)
(iv)
N
OH
OH
OH
OH
1
2
4
3
O
O
O
N
N
(v)
R
OH
R
5a, b
6a, b
Scheme 1. Reagents and conditions: (i) DMF–DMA reflux, 1 h; (ii) NH2OHꢁHCl, EtOH, reflux, 2 h; (iii) NaOH, EtOH/H2O (1:3), rt 24 h; (iv) thiophene-2-carboxaldehyde or
furfural, piperidine, EtOH, rt, 15 min; (v) SeO2, 1,4-dioxane, reflux.
O
O
R1
R1
O
O
R
O
O
O
R2
O
(ii)
R1
O
O
(i)
R1
8
R
R
R2
OH
7
10
R = Alkyl, Br,H;
R1, R2 = Aryl or hetaryl
R
OH R2
9
Scheme 2. Reagents and conditions: (i) R2CHO, piperidine, EtOH, rt (6–12 h) or heating (0.5–3 h); (ii) SeO2, 1,4-dioxane, reflux.
versatile and enabled the synthesis of various 3-cyanochromones
6a–l, including previously unavailable 2-hetaryl-substituted exam-
ples 6a–c, in good to high yields (Table 1).
In summary, we have developed a general and simple method
for the synthesis of a range of 2-alkyl-, 2-aryl-, and 2-hetaryl-3-
cyanochromones in good to excellent yields. The method does
not require the use of expensive reagents or chromatographic puri-
fication of the reaction products.
O
O
O
O
O
N
N
N
(i)
OH
R
4
O
6a-l
R
11
Scheme 3. Reagents and conditions: (i) RCOCl, pyridine, rt 1–3 h.
Acknowledgements
the higher activity of the methylene group in nitrile derivatives 4
compared to that in diketones 5. This encouraged us to synthesize
esters 11 in expectation of spontaneous cyclization to cyanochro-
mones 6a–l (Scheme 3).
The authors are grateful to OJSC CSRIT «Technomash» for finan-
cial support, and Dr. E. P. Grebennikov and Dr. A. U. Bochkov for
helpful suggestions.
In fact, the acylation of nitrile 4 with acid chlorides in pyridine
at room temperature afforded the target nitriles in 49–90% yields.
It should be noted that the reaction products did not require chro-
matographic purification and pure products could be obtained by
simple crystallization, for example, from ethanol. The method is
Supplementary data
Supplementary data (characterization data of synthesized com-
pounds) associated with this article can be found, in the online ver-
include MOL files and InChiKeys of the most important compounds
described in this article.
Table 1
Isolated yields and melting points of compounds 6a–la.
Entry
R
Product
Mp (°C)
Yield (%)
1
2
3
4
5
6
7
8
Furan-2-yl
Thien-2-yl
5-Methylthien-2-yl
Ph
2-Cl-C6H4
4-Cl-C6H4
2-F-C6H4
4-F-C6H4
2-Me-C6H4
Me
6a
6b
6c
6d
6e
6f
6g
6h
6i
166–168
198–200
149–151
165–166
150–152
203–205
189–191
209–211
165–167
192–194
123–125
189–190
82
64
60
90
67
78
63
70
61
References and notes
1. Lassagne, F.; Bombarda, I.; Dherbomez, M.; Sinbandhit, S.; Gaydou, E. M.
Heterocycles 2006, 68, 787–799.
2. Menichincheri, M.; Ballinari, D.; Bargiotti, A.; Bonomini, L.; Ceccarelli, W.;
D’Alessio, R.; Fretta, A.; Moll, J.; Polucci, P.; Soncini, C.; Tibolla, M.; Trosset, J.-Y.;
Vanotti, E. J. Med. Chem. 2004, 47, 6466–6475.
3. Klutchko, S. B.; Von Strandtmann, R. E. M. US Patent 3937837, 1976; Chem.
Abstr. 1976, 84, 180040.
4. Cushman, M.; Nagarathnam, D.; Burg, D. L.; Geahlen, R. L. J. Med. Chem. 1991,
34, 798–806.
5. Lassagne, F.; Pochat, F. Tetrahedron Lett. 2003, 44, 9283–9285.
6. Sakagami, H.; Kawase, M.; Wakabayashi, H.; Kurihara, T. In vivo 2007, 21, 829–834.
7. Sosnovskikh, V. Y.; Moshkin, V. S.; Kodess, M. I. Tetrahedron Lett. 2009, 50,
6515–6519.
8. Ibrahim, M. A. Synth. Commun. 2009, 39, 3527–3545.
9. Nohara, A.; Kuriki, H.; Saijo, T.; Sugihara, H.; Kanno, M.; Sanno, Y. J. Med. Chem.
1977, 20, 141–145.
9
10
11
12
6j
6k
6l
65 (70)b
(54)b
49
Et
CH2Ph
a
The corresponding acid chloride (1.05 mmol) was added to nitrile 4 (1 mmol) in
pyridine (1.5 mL). After stirring at rt, the mixture was poured into water. The
precipitate that formed was washed with water, dried, and if required, crystallized
from ethanol.
The yields in the acylation with the use of acid anhydrides under reflux con-
ditions are given in parentheses.
b
10. Ghosh, C. K.; Sahana, S. Indian J. Chem., Sect. B 1996, 35, 203–206.
11. Newman, M. S.; Ferrari, J. L. Tetrahedron Lett. 1962, 3, 199–201.