Journal of the American Chemical Society
Article
Balaram., P. J. Chem. Soc., Perkin Trans. 2 1998, 137−143. (c) Haque,
T. S.; Gellman, S. H. J. Am. Chem. Soc. 1997, 119, 2303−2304.
(d) Kantharaju; Raghothama, S.; Aravinda, S.; Shamala, N.; Balaram, P.
Biopolymers (Pept. Sci.) 2010, 94, 360−370. (e) Aravinda, S.; Harini, V.
V.; Shamala, N.; Das, C.; Balaram, P. Biochemistry 2004, 43, 1832−
1846.
Zanuy, D.; Haspel, N.; Tsai, C.-J.; Aleman
Biochemistry 2007, 46, 1205−1218.
́
, C.; Nussinov, R.
(28) Even when a weaker π-donor, L-Pro-L-PheGly, was employed,
significant amounts of [2]-catenanes were generated (SI1 Table 2).
(29) In a three-component DSA using D-Pro-D-Ala/D-Pro-Gly (1:1)
as the D-monomers with L,L-H2, the catenane compositions indicate the
complete interchangeability between D-Pro-Aib and D-Pro-Gly (see SI1
Figures 11 and 12).
(14) (a) Lai, J. R.; Huck, B. R.; Weisblum, B.; Gellman, S. H.
Biochemistry 2002, 41, 12835−12842. (b) Paul, P. K. C.; Sukumar, M.;
Bardi, R.; Piazzesi, A. M.; Valle, G.; Toniolo, C.; Balaram, P. J. Am.
Chem. Soc. 1986, 108, 6363−6370. (c) Harini, V. V.; Aravinda, S.; Rai,
R.; Shamala, N.; Balaram, P. Chem.Eur. J. 2005, 11, 3609−3620.
(d) Benedetti, E. Biopolymers (Pept. Sci.) 1996, 40, 3−44. (e) Toniolo,
C.; Crisma, M.; Formaggio, F.; Peggion, C. Biopolymers (Pept. Sci.)
2001, 60, 396−419.
(30) (a) Chatterjee, B.; Saha, I.; Raghothama, S.; Aravinda, S.; Rai,
R.; Shamala, N.; Balaram, P. Chem.Eur. J. 2008, 14, 6192−6204.
(b) Rai, R.; Raghothama, S.; Balaram, P. J. Am. Chem. Soc. 2006, 128,
2675−2681. (c) Nair, M.; Vijayan, M.; Venkatachalapathi, Y. V.;
Balaram, P. J. Chem. Soc., Chem. Commun. 1979, 1183−1184.
(31) (a) Park, H. S.; Kim, C.; Kang, Y. K. Biophys. Chem. 2003, 105,
89−104. (b) Antohi, O.; Sapse, A.-M. J. Mol. Struct. (Theochem) 1998,
430, 247−258. (c) Aubry, A.; Cung, M. T.; Marraud, M. J. Am. Chem.
Soc. 1985, 107, 7640−7647.
F
(15) 7−10 days for DSAs containing H2 or 2, 2−3 days for DSAs
using HO2 or HO2Ph, 3−4 days for DSAs having H2Ph or F2Ph, and 3−5
F
days for DSAs having H2Ph or 2Ph
.
Aze
Aze
(32) The standard dihedral angle comparison of these types and type
VIII shows more than 110° differences in Φi+1, Ψi+1, and Ψi+2 values,
which relate to the turn backbone amide and carbonyl (i+1) and
carbonyl (i+2) groups: type II, Φi+1, −60°, Ψi+1, 131°, Φi+2, 84°, and
(16) The standard dihedral angle comparisons of the type II′ and I′
turns show almost 180° differences in Ψi+1 and Φi+2 values, which
correspond to the turn backbone carbonyl (i+1) and amide (i+2)
groups: type II′, Φi+1, 60°, Ψi+1, −126°, Φi+2, −91°, and Ψi+2, 1°; type
I′, Φi+1, 55°, Ψi+1, 38°, Φi+2, 78°, and Ψi+2, 6°.
(17) Only a trace amount of [2]-catenanes (≪1%) is generated. The
loss was calculated from the HPLC-UV trace total area (289 nm)
comparison of [2]-catenanes generated from a DSA reaction using a D-
Pro-Aib (D-1a) and a L-Pro-L-NaphGly (L,L-H2).
(18) (a) McComas, C. C.; Crowley, B. M.; Boger, D. L. J. Am. Chem.
Soc. 2003, 125, 9314−9315. (b) Walsh, C. T.; Fisher, S. L.; Park, I.-S.;
Prahalad, M.; Wu, Z. Chem. Biol. 1996, 3, 21−28. (c) Walsh, C. T.
Science 1993, 261, 308−309. (d) Bugg, T. D. H.; Wright, G. D.; Dutka-
Malen, S.; Arthur, M.; Courvalin, P.; Walsh, C. T. Biochemistry 1991,
30, 10408−10415.
Ψi+2, 1°; type I′, Φi+1, 55°, Ψi+1, 38°, Φi+2, 78°, and Ψi+2, 6°; type II′,
Φi+1, 60°, Ψi+1, −126°, Φi+2, −91°, and Ψi+2, 1°.
(33) (a) Nishio, M.; Hirota, M.; Umezawa, Y. The CH/π Interaction:
Evidence, Nature, and Consequences; Wiley-VCH; New York, 1998.
(b) Fujii, A.; Shibasaki, K.; Kazama, T.; Itaya, R.; Mikami, N.; Tsuzuki,
S. Phys. Chem. Chem. Phys. 2008, 10, 2836−2843. (c) Gotch, A. J.;
Pribble, R. N.; Ensminger, F. A.; Zwier, T. S. Laser Chem. 1994, 13,
187−205. (d) Gord, J. R.; Garrett, A. W.; Bandy, R. E.; Zwier, T. S.
Chem. Phys. Lett. 1990, 171, 443−450.
(34) L,L-cis‑F2 and L,L-cis‑HO2Ph monomers could not be separated from
their epimers. Therefore, the experiments using these monomers were
omitted.
(19) Since the [2]-catenanes are D-component-rich, the residual
oligomers populate the more L-component-rich species with D-1a.
Despite this bias, the n-mer ratios are largely unaffected.
(20) An equivalent logical analysis can be constructed for the 4
catenanes.
(35) See SI2 for HPLC traces of DSA solutions and LC-TOF
analyses of the generated catenanes.
(36) (a) Dey, R. C.; Seal, P.; Chakrabarti, S. J. Phys. Chem. A 2009,
113, 10113−10118. (b) Tsuzuki, S.; Honda, K.; Uchimaru, T.;
Mikami, M.; Tanabe, K. J. Am. Chem. Soc. 2000, 122, 3746−3753.
(37) (a) Kim., W.; Hardcastle, K. I.; Conticello, V. P. Angew. Chem.,
(21) Since [2]-catenane 4 contains three units of L,L-H2, a separate
but logically equivalent set of isomers should result.
́
Int. Ed. 2006, 45, 8141−8145. (b) Lesarri, A.; Cocinero, E. J.; Lopez, J.
(22) Similarly consistent with case 2 was the detection (by LC-TOF)
of only two isomers of 3 with 1 equiv of D-Pro-D-Ala (Figure 3a; see
additional details in SI1 Figure 7).
C.; Alonso, J. L. J. Am. Chem. Soc. 2005, 127, 2572−2579. (c) Thomas,
K. M.; Naduthambi, D.; Tririya, G.; Zondlo, N. J. Org. Lett. 2005, 7,
2397−2400. (d) DeRider, M. L.; Wilkens, S. J.; Waddell, M. J.;
Bretscher, L. E.; Weinhold, F.; Raines, R. T.; Markley, J. K. J. Am.
Chem. Soc. 2002, 124, 2497−2505. (e) Renner, C.; Alefelder, S.; Bae, J.
H.; Budisa, N.; Huber, R.; Moroder, L. Angew. Chem., Int. Ed. 2001, 40,
923−925.
(23) Gibbs, A. C.; Bjorndahl, T. C.; Hodges, R. S.; Wishart, D. S. J.
Am. Chem. Soc. 2002, 124, 1203−1213.
(24) The introduction of a CF3 at Me 1 (Scheme 2b) (D-Pro-3,3,3-
trifluoro-L-Ala) completely destabilized the catenanes, and no catenane
formation was observed.
(38) (a) Okuyama, K.; Miyama, K.; Morimoto, T.; Masakiyo, K.;
(25) The Hunter−Sanders model predicts an increased π/π repulsion
with electron-donating substituents, indicating that electrostatic effects
alone do not explain the observed stability trend. X-ray analysis of
HO3n (HO3c in ref 3) did not reveal any close contacts to the para-
substituent. Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990,
112, 5525−5534.
Mizuno, K.; Bachinger, H. P. Biopolymers 2011, 95, 628−640.
̈
(b) Shoulders, M. D.; Satyshur, K. A.; Forest, K. T.; Raines, R. T.
Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 559−564. (c) Jiravanichanun,
N.; Nishino, N.; Okuyama, K. Biopolymers 2006, 81, 225−233.
(39) The fact that the cis-4-F-L-Pro-Gly segment has been reported to
more strongly favor the type I β-turn than trans-4-F-L-Pro-Gly may
attenuate this possibility: Kim, W.; McMillan, A.; Snyder, J. P.;
Conticello, V. P. J. Am. Chem. Soc. 2005, 127, 18121−18132.
(40) (a) Tsuzuki, S.; Honda, K.; Fujii, A.; Uchimaru, T.; Mikami, M.
Phys. Chem. Chem. Phys. 2008, 10, 2860−2865. (b) Morita, S.; Fujii,
A.; Mikami, N.; Tsuzuki, S. J. Phys. Chem. A 2006, 110, 10583−10590.
(c) Ringer, A. L.; Figgs, M. S.; Sinnokrot, M. O.; Sherrill, C. D. J. Phys.
Chem. A 2006, 110, 10822−10828.
F
(26) X-ray structure analysis of the catenane 3sPh (F3dPh in ref 3)
containing the β-turns of Ac4c residues also shows that these β-turns
are quite similar to those of Aib. Previous studies have shown Ac3c
residues to form the similar (but more rigid) β-turns: (a) Aleman, C. J.
́
Phys. Chem. B 1997, 101, 5046−5050. (b) Gatos, M.; Formaggio, F.;
Crisma, M.; Toniolo, C.; Bonora, G. M.; Benedetti, Z.; Di Blasio, B.;
Iacovino, R.; Santini, A.; Saviano, M.; Kamphuis, J. J. Pept. Sci. 1997, 3,
110−122. (c) Crisma, M.; Bonora, G. M.; Toniolo, C.; Barone, V.;
Benedetti, Z.; Di Blasio, B.; Pavone, V.; Pedone, C.; Santini, A.;
Fraternali, F.; Bavoso, A.; Lelj, F. Int. J. Biol. Macromol. 1989, 11, 345−
352. (d) Toniolo, C. Biopolymers 1989, 28, 247−257.
(41) Ran, J.; Wong, M. W. J. Phys. Chem. A 2006, 110, 9702−9709.
(42) (a) Blessing, R. H.; Smith, D. Acta Crystallogr. 1982, B38,
1203−1207. (b) Berman, H. M.; McGandy, E. L.; Burgner, J. W., II;
VanEtten, R. L. J. Am. Chem. Soc. 1969, 91, 6177−6182. (c) Jhon, J. S.;
Kang, Y. K. J. Phys. Chem. B 2007, 111, 3496−3507.
(43) Computational studies show that the optimum aromatic−CH
intermolecular separation (R) increase from the pyrene−methane (R =
3.4 Å) to the naphthalene−methane (R = 3.6 Å) to the benzene−
(27) (a) Ballano, G.; Zanuy, D.; Jimen
Nussinov, R.; Aleman, C. J. Phys. Chem. B 2008, 112, 13101−13115.
(b) Zanuy, D.; Rodrígues-Ropero, F.; Haspel, N.; Zheng, J.; Nussinov,
R.; Aleman, C. Biomacromolecules 2007, 8, 335−3146. (c) Zheng, J.;
́
ez, A. I.; Cativiela, C.;
́
́
11442
dx.doi.org/10.1021/ja302347q | J. Am. Chem. Soc. 2012, 134, 11430−11443