10.1002/anie.201902509
Angewandte Chemie International Edition
COMMUNICATION
[1]
Selected reviews on Tsuji-Trost reaction: a) B. M. Trost, D. L. Van
Vranken, Chem. Rev. 1996, 96, 395-422; b) B. M. Trost, M. L. Crawley,
Chem. Rev. 2003, 103, 2921-2944; c) T. Graening, H.-G. Schmalz,
Angew. Chem. Int. Ed. 2003, 42, 2580-2584; Angew. Chem. 2003, 115,
2684-2688; d) B. M. Trost, J. Org. Chem. 2004, 69, 5813-5837; e) Z. Lu,
S. Ma, Angew. Chem. Int. Ed. 2008, 47, 258-297; Angew. Chem. 2008,
120, 264-303; f) B. M. Trost, T. Zhang, J. D. Sieber, Chem. Sci. 2010, 1,
427-440; g) S. Oliver, P. A. Evans, Synthesis 2013, 45, 3179-3198; h) N.
A. Butt, W. Zhang, Chem. Soc. Rev. 2015, 44, 7929-7967; i) B. M. Trost,
Tetrahedron 2015, 71, 5708-5733.
17422; f) X. Huo, J. Zhang, J. Fu, R. He, W. Zhang, J. Am. Chem. Soc.
2018, 140, 2080-2084.
[13] J. Zheng, B. Breit, Angew. Chem. Int. Ed. 2019, 58, 3392-3397; Angew.
Chem. 2019, 131, 3430-3435.
[14] Selected reviews on photoredox/transition metal dual catalysis: a) K. L.
Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035-10074; b)
J. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy, N. R. Patel, G. A.
Molander, Acc. Chem. Res. 2016, 49, 1429-1439; c) M. N. Hopkinson, A.
Tlahuext-Aca, F. Glorius, Acc. Chem. Res. 2016, 49, 2261-2272; d) J.
Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan,
Nat. Rev. Chem. 2017, 1, Article Number 0052.
[2]
[3]
A selected review on Rh-catalyzed allylic substitution: B. W. H. Turnbull,
P. A. Evans, J. Org. Chem. 2018, 83, 11463-11479.
[15] Selected examples of metallaphotoredox allylation with Pd or Ni
catalysis: a) S. B. Lang, K. M. O’Nele, J. A. Tunge, J. Am. Chem. Soc.
2014, 136, 13606-13609; b) S. B. Lang, K. M. O’Nele, J. T. Douglas, J.
A. Tunge, Chem. – Eur. J. 2015, 21, 18589-18593; c) J. Xuan, T.-T. Zeng,
Z.-J. Feng, Q.-H. Deng, J.-R. Chen, L.-Q. Lu, W.-J. Xiao, H. Alper,
Angew. Chem. Int. Ed. 2015, 54, 1625-1628; Angew. Chem. 2015, 127,
1645-1648; d) J. K. Matsui, Á. Gutiérrez-Bonet, M. Rotella, R. Alam, O.
Gutierrez, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 15847-
15851; Angew. Chem. 2018, 130, 16073-16077; e) H.-H. Zhang, J.-J.
Zhao, S. Yu, J. Am. Chem. Soc. 2018, 140, 16914-16919.
Selected reviews on Ir-catalyzed allylic substitution: a) G. Helmchen, A.
Dahnz, P. Dübon, M. Schelwies, R. Weihofen, Chem. Commun. 2007,
675-691; b) R. Takeuchi, S. Kezuka, Synthesis 2006, 3349-3366; c) J. F.
Hartwig, L. M. Stanley, Acc. Chem. Res. 2010, 43, 1461-1475; d) J. C.
Hethcox, S. E. Shockley, B. M. Stoltz, ACS Catal. 2016, 6, 6207-6213;
e) J. Qu, G. Helmchen, Acc. Chem. Res. 2017, 50, 2539-2555; f) S. E.
Shockley, J. C. Hethcox, B. M. Stoltz, Synlett 2018, 29, 2481-2492; g) Q.
Cheng, H.-F. Tu, C. Zheng, J.-P. Qu, G. Helmchen, S.-L. You, Chem.
Rev. 2019, 119, 1855-1969.
[4]
[5]
Selected examples: a) J. Tsuji, I. Minami, I. Shimizu, Tetrahedron Lett.
1984, 25, 5157-5160; b) I. Minami, I. Shimizu, J. Tsuji, J. Organomet.
Chem. 1985, 296, 269-280.
[16] a) J. L. Roustan, J. Y. Mérour, F. Houlihan, Tetrahedron Lett. 1979, 20,
3721-3724; b) B. Bhatia, M. M. Reddy, J. Iqbal, Tetrahedron Lett. 1993,
34, 6301-6304. c) Tsuji reported that Co2(CO)8 was not catalytically
active for allylic alkylation. See [4b]. d) Very recently Co complex
activated by zinc-catalyzed reverse prenylation of β-ketoesters was
reported, but its advantage compared to conventional catalysts was not
elucidated: M. Sun, J.-F. Chen, S. Chen, C. Li, Org. Lett. 2019, 21, 1278-
1282.
Selected examples: a) P. A. Evans, J. D. Nelson, J. Am. Chem. Soc.
1998, 120, 5581-5582; b) P. A. Evans, S. Oliver, J. Chae, J. Am. Chem.
Soc. 2012, 134, 19314-19317; c) B. W. H. Turnbull, P. A. Evans, J. Am.
Chem. Soc. 2015, 137, 6156-6159.
[6]
[7]
[8]
Selected examples: a) R. Takeuchi, M. Kashio, Angew. Chem. Int. Ed.
Engl. 1997, 36, 263-265; Angew. Chem. 1997, 109, 268-270; b) R.
Takeuchi, M. Kashio, J. Am. Chem. Soc. 1998, 120, 8647-8655.
Selected examples: a) J. P. Janssen, G. Helmchen, Tetrahedron Lett.
1997, 38, 8025-8026; b) B. Bartels, C. García-Yebra, F. Rominger, G.
Helmchen, Eur. J. Inorg. Chem. 2002, 2569-2586.
[17] Reviews: a) T. Yoshino, S. Matsunaga, Adv. Synth. Catal. 2017, 359,
1245-1262; b) T. Yoshino, S. Matsunaga, Adv. Organomet. Chem. 2017,
68, 197-247.
[18] Relevant reviews: a) G. Cahiez, A. Moyeux, Chem. Rev. 2010, 110,
1435-1462; b) K. Gao, N. Yoshikai, Acc. Chem. Res. 2014, 47, 1208-
1219; c) M. Moselage, J. Li, L. Ackermann, ACS Catal. 2016, 6, 498-525.
Selected examples: d) C. K. Reddy, P. Knochel, Angew. Chem. Int. Ed.
Engl. 1996, 35, 1700-1701; Angew. Chem. 1996, 108, 1812-1813; e) K.
Mizutani, H. Yorimitsu, K. Ohshima, Chem. Lett. 2004, 33, 832-833; f) L.
Ilies, Q. Chen, X. Zeng, E. Nakamura, J. Am. Chem. Soc. 2011, 133,
5221-5223; g) T. Iwasaki, H. Takagawa, S. P. Singh, H. Kuniyasu, N.
Kambe, J. Am. Chem. Soc. 2013, 135, 9604-9607; h) Q.-A. Chen, D. K.
Kim, V. M. Dong, J. Am. Chem. Soc. 2014, 136, 3772-3775; i) M. R.
Friedfeld, H. Zhong, R. T. Ruck, M. Shevlin, P. J. Chirik, Science 2018,
360, 888-893.
Selected examples: a) T. Ohmura, J. F. Hartwig, J. Am. Chem. Soc. 2002,
124, 15164-15165; b) C. A. Kiener, C. Shu, C. Incarvito, J. F. Hartwig, J.
Am. Chem. Soc. 2003, 125, 14272-14273; c) W. Chen, J. F. Hartwig, J.
Am. Chem. Soc. 2013, 135, 2068-2071; d) S. T. Madrahimov, Q. Li, A.
Sharma, J. F. Hartwig, J. Am. Chem. Soc. 2015, 137, 14968-14981.
Selected examples: a) C. Defieber, M. A. Ariger, P. Moriel, E. M. Carreira,
Angew. Chem. Int. Ed. 2007, 46, 3139-3143; Angew. Chem. 2007, 119,
3200-3204; b) M. Roggen, E. M. Carreira, Angew. Chem. Int. Ed. 2011,
50, 5568-5571; Angew. Chem. 2011, 123, 5683-5686; c) M. Lafrance, M.
Roggen, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3470-3473;
Angew. Chem. 2012, 124, 3527-3530; d) J. Y. Hamilton, D. Sarlah, E. M.
Carreira, J. Am. Chem. Soc. 2013, 135, 994-997; e) S. Krautwald, D.
Sarlah, M. A. Schafroth, E. M. Carreira, Science 2013, 340, 1065-1068;
f) S. L. Rössler, S. Krautwald, E. M. Carreira, J. Am. Chem. Soc. 2017,
139, 3603.
[9]
[19] Pioneering studies by Rovis: a) K. E. Ruhl, T. Rovis, J. Am. Chem. Soc.
2016, 138, 15527-15530; b) S. M. Thullen, T. Rovis, J. Am. Chem. Soc.
2017, 139, 15504-15508; c) B. D. Ravetz, J. Y. Wang, K. E. Ruhl, T.
Rovis, ACS Catal. 2019, 9, 200-204. See also: d) J. Hou, A. Ee, W. Feng,
J.-H. Xu, Y. Zhao, J. Wu, J. Am. Chem. Soc. 2018, 140, 5257-5263.
[20] During the review of this manuscript, König disclosed controlled
isomerization of alkenes using a relevant organophotoredox/Co catalytic
system. Q.-Y. Meng, T. E. Schirmer, K. Katou, B. König, Angew. Chem.
Int. Ed. 2019, 58, 5723-5728; Angew. Chem. 2019, 131, 5779-5784.
[21] Selected reviews on photoredox catalysis: a) J. M. R. Narayanam, C. R.
J. Stephenson, Chem. Soc. Rev. 2011, 40, 102-113; b) C. K. Prier, D. A.
Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363; c) D. M.
Schultz, T. P. Yoon, Science 2014, 343, 1239176; d) N. A. Romero, D.
A. Nicewicz, Chem. Rev. 2016, 116, 10075-10166; e) J. Xie, H. Jin, A. S.
K. Hashmi, Chem. Soc. Rev. 2017, 46, 5193-5203.
[10] Selected examples: a) W.-B. Liu, C. Zheng, C.-X. Zhuo, L.-X. Dai, S.-L.
You, J. Am. Chem. Soc. 2012, 134, 4812-4821; b) S.-B. Tang, X. Zhang,
H.-F. Tu, S.-L. You, J. Am. Chem. Soc. 2018, 140, 7737-7742.
[11] Selected examples of Rh catalysis: a) T. Hayashi, A. Okada, T. Suzuka,
M. Kawatsura, Org. Lett. 2003, 5, 1713-1715; b) U. Kazmaier, D. Stolz,
Angew. Chem. Int. Ed. 2006, 45, 3072-3075; Angew. Chem. 2006, 118,
3143-3146; c) J. S. Arnold, H. M. Nguyen, J. Am. Chem. Soc. 2012, 134,
8380-8383; d) C. Li, B. Breit, Chem. – Eur. J. 2016, 22, 14655-14663.
[12] Selected examples of Ir catalysis: a) K. Tissot-Croset, D. Polet, A.
Alexakis, Angew. Chem. Int. Ed. 2004, 43, 2426-2428; Angew. Chem.
2004, 116, 2480-2482; b) W.-B. Liu, C. M. Reeves, S. C. Virgil, B. M.
Stoltz, J. Am. Chem. Soc. 2013, 135, 10626-10629; c) A. T. Meza, T.
Wurm, L. Smith, S. W. Kim, J. R. Zbieg, C. E. Stivala, M. J. Krische, J.
Am. Chem. Soc. 2018, 140, 1275-1279; d) L. Wei, Q. Zhu, S.-M. Xu, X.
Chang, C.-J. Wang, J. Am. Chem. Soc. 2018, 140, 1508-1513; e) P. J.
Moon, Z. Wei, R. J. Lundgren, J. Am. Chem. Soc. 2018, 140, 17418-
[22] J. Luo, J. Zhang, ACS Catal. 2016, 6, 873-877.
[23] Control experiments supported that all the catalyst components (Co,
photocatalyst, electron donor and visible light) are indispensable for this
reaction. In addition, when Zn powder or In powder was employed in
i
place of 4c and Pr2NEt under the relevant conditions, no 3aa was
obtained. See the Supporting Information for details.
This article is protected by copyright. All rights reserved.