Page 3 of 4
Journal of the American Chemical Society
bined isolated values; ee’s were determined by HPLC with a chi-
ral stationary phase column.
the X-ray crystal structures and Johnson-Matthey for generous
gifts of palladium salts
1
2
3
4
5
6
7
8
9
These cycloadducts are highly versatile as chiral building
blocks. The flexibility of the acyl imidazole group allows for
easy manipulation to various functionalities.8 Additionally, the
proximal nature of the alkene and alkyne in 3l-n led us to in-
vestigate ruthenium-catalyzed ring closing metathesis strate-
gies toward the synthesis of tricyclic systems.17 We posited
that substitution of the imidazole with an alkyl chain bearing a
terminal alkene would generate a triene-yne system, upon
which exposure to Grubbs’ catalyst would first effect an enyne
metathesis reaction followed by second ring closure by the
pendant alkene. To test this, activation of the imidazole with
methyl triflate and subsequent alkylation with homoallyl-
magnesium bromide resulted in the triene-yne 5 in 68% yield
(Scheme 4).8c Using 10 mol% of Hoveyda-Grubbs II catalyst
in benzene at reflux performed the desired ring closure to give
6 in 57% yield. This product possesses three chemically dif-
ferentiated olefins with three stereocenters set during the
TMM cycloaddition. The 5,5,7-fused tricylic ring system of 6
also resembles the carbocyclic core of the Daphnyphyllum
alkaloids.18
REFERENCES
(1) (a) Trost, B. M. Pure Appl. Chem. 1988, 60, 1615. (b)
Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
(c) Chan, D. M. T. Recent Advances in Palladium-Catalyzed
Cycloadditions Involving Trimethylenemethane and its Ana-
logs. In Cycloaddition Reactions in Organic Synthesis, 1st
ed.; Kobayashi, S.,Jorgensen, K. A., Eds.; Wiley-VCH:
Weinheim, Germany, 2002; pp 57-83.
(2) (a) Trost, B. M.; Stambuli, J. P.; Silverman, S. M.; Schwörer,
U. J. Am. Chem. Soc. 2006, 128, 13328. (b) Trost, B. M.;
Bringley, D. A.; Seng, P. S. Org. Lett. 2012, 14, 234.
(3) Trost, B. M.; Bringley, D. A.; Silverman, S. M. J. Am. Chem.
Soc. 2011, 133, 7664.
(4) (a) Trost. B. M.: Silverman, S. M.; Stambuli, J. P. J. Am.
Chem. Soc. 2007, 129, 12398. (b) Trost, B. M.; Silverman, S.
M. J. Am. Chem. Soc. 2010, 132, 8238. (c) Trost, B. M.; Sil-
verman, S. M. J. Am. Chem. Soc. 2012, 134, 4941.
(5) (a) Das, S.; Chandrasekhar, S.; Yadav, J. S.; Grée, R. Chem.
Rev. 2007, 107, 3286. (b) Mehta, G.; Srikrishna, A. Chem.
Rev. 1997, 97, 671.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) Trost, B. M.; Nanninga, T. N.; Satoh, T. J. Am. Chem. Soc.
1985, 107, 721.
Scheme 4. Further Functionalization of Cycloadduct 3n
(7) (a) Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem.
Soc. 2007, 129, 12396. (b) Trost, B. M.; Silverman, S. M.;
Stambuli, J. P. J. Am. Chem. Soc. 2011, 133, 19483.
(8) (a) Evans, D. A.; Fandrick, K. R.; Song, H.-J.; Scheidt, K. A.;
Xu, R. J. Am. Chem. Soc. 2007, 129, 10029. (b) Evans, D.
A.; Fandrick, K. R. Org. Lett. 2006, 8, 2249-2252. (c) Trost,
B. M.; Lehr, K.; Michaelis, D. J.; Xu, J.; Buckl, A. J. Am.
Chem. Soc. 2010, 132, 8915.
(9) Acyl pyrroles and various ester derivatives gave lower yield
and selectivity of the desired cycloadduct.
(10) Unpublished results.
(11) See Ayora, I.; Ceder, R. M.; Espinel, M.; Muller, G.; Roca-
mora, M.; Serrano, M. Organometallics, 2011, 30, 115 and
references therein.
(12) (a) Delapierre, G.; Brunel, J. M.; Constantieux, T.; Buono, G.
Tet. Asymm. 2001, 12, 1345. (b) Tsarev, V. N.; Lyubimov, S.
E.; Shiryaev, A. A.; Zheglov, S. V.; Bondarev, O. G.; Da-
vankov, V. A.; Kabro, A. A.; Moiseev, S. K.; Kalinin, V. N.;
Gavrilov, K. N. Eur. J. Org. Chem. 2004, 2214. (c) Hilgraf,
R.; Pfaltz, A. Adv. Synth. Catal. 2005, 347, 61. (d) Markert,
C.; Rösel, P.; Pfaltz, A. J. Am. Chem. Soc. 2008, 130, 3234.
(e) Gavrilov, K. N.; Zheglov, S. V.; Rastorguev, E. A.;
Groshkin, N. N.; Maksimova, M. G.; Benetsky, E. B.; Da-
vankov, V. A.; Reetz, M. T. Adv. Synth. Catal. 2010, 352,
2599.
H
1) 4Å MS, MeOTf
MeCN
TIPSO
10 mol% HGII
PhH, reflux
3n
81% ee
H
2) THF, -78 ºC
BrMg
H
TIPSO
O
O
6
5
57% yield
79% ee
68% yield
In summary, a palladium-catalyzed vinyl-substituted TMM
asymmetric cycloaddition has been achieved. Tetrasubstituted
cyclopentanes bearing three contiguous stereocenters are syn-
thesized in good yields with good regio-, diastereo- and enan-
tioselectivity. The realization of this process was due to the
development of new bisdiamidophosphite ligands based on
(S,S)-trans-1,2-cyclohexane diamine and (2R,4R)-pentanediol.
These newly synthesized bisdiamidophosphite ligands bearing
N-phenyl substituents represent a class of ligands not previ-
ously examined, allowing reactivity and selectivity that has not
been observed prior to this work. Furthermore, these cycload-
ducts bearing a 1,4-diene and acyl imidazole have been subse-
quently functionalized, displaying the synthetic utility of such
products. Expansion of the scope of the reaction in both donor
and acceptor complexity is currently underway and will be
reported in due course.
(13) Preliminary studies utilizing N-alkyl substituents on the lig-
and structure were less promising, resulting in lower yield and
selectivity.
(14) Aoyama, H.; Tokunaga, M.; Kiyosu, J.; Iwasawa, T.; Obora,
Y.; Tsuji, Y. J. Am. Chem. Soc. 2005, 127, 10474.
(15) All products were isolated as a single regioisomer. The abso-
lute and relative stereochemistry of the product was deter-
mined by the crystal structure of 3e (see Supporting Infor-
mation). All other products were assigned by analogy.
(16) 26% of the γ,δ-cycloadduct was observed in the case of 3j.
For 3k-n, only the α,β-cycloadduct was observed.
(17) See Mori, M. Adv. Synth. Catal. 2007, 349, 121 and refer-
ences therein.
(18) Li, C.-S.; Di, Y.-T.; Mu, S.-Z.; He, H.-P.; Zhang, Q.; Fang,
X.; Zhang, Y.; Li, S.-L.; Lu, Y.; Gong, Y.-Q.; Hao, X.-J. J.
Nat. Prod. 2008, 71, 1202.
ASSOCIATED CONTENT
Supporting Information. Detailed experimental details, com-
pound characterization data, and spectra. This material is availa-
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
We thank the NSF for their generous support of our programs.
We thank Dr. Allen Oliver from the University of Notre Dame for
ACS Paragon Plus Environment