Table 1 Values of Dn0 and b estimated by curve fitting with eqn (3)
and (4)
Sample
Dn0
b
SPM-DPDA-OC6
Mono-DPDA-OC6
DPDA-OC6
0.41
0.45
0.46
0.24
0.19
0.16
containing a DPDA moiety in the side chain should be useful for
optical applications such as the fabrication of optical phase difference
films, laser emission films, and optical rotation plates.
Fig. 3 Wavelength dependence of birefringence for SPM-DPDA-OC6
at three different temperatures.
Notes and references
1 (a) S.-T. Wu, Mol. Cryst. Liq. Cryst., 2004, 411, 93; (b) K. Okano,
A. Shishido and T. Ikeda, Macromolecules, 2006, 39, 145.
2 (a) R. Ozaki, T. Matsui, M. Ozaki and K. Yoshino, Appl. Phys. Lett.,
2003, 82, 3593; (b) J. Hwang, M. H. Song, B. Park, S. Nishimura,
T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa and H. Takezoe,
Nat. Mater., 2005, 4, 383; (c) M. Uchimura, Y. Watanabe,
F. Araoka, J. Watanabe, H. Takezoe and G. Konishi, Adv. Mater.,
2010, 22, 4473; (d) Y. Watanabe, M. Uchimura, F. Araoka,
J. Watanabe, H. Takezoe and G. Konishi, Appl. Phys. Express,
2009, 2, 102501.
of the order parameter (S) of nematic LC. In Fig. 4, the Dn values
collected at 550 nm are plotted against the temperature. This
temperature dependence is well described by following Haller’s
approximation:16
Dn ¼ Dn0S
(3)
(4)
S ¼ (1 ꢂ T/Ti)b
3 (a) M. O’Neill and S. M. Kelly, Adv. Mater., 2003, 15, 1135; (b)
Y. Matsuura, Y. Nam, M. Kinoshita and T. Ikeda, Mol. Cryst. Liq.
Cryst., 2009, 513, 153.
Here, Dn0 is the extrapolation value for perfectly oriented birefrin-
gence (S ¼ 1) of the nematic LC and b is the material constant
characteristic of the nematic LC. As observed in Fig. 4, the fitting is
well done and the determined values of n0 and b are listed in Table 1.
Although some deviation is observed in the lower temperature region
below 70 ꢁC, it is due to the vitrification of the nematic LC. The value
of n0 is 0.41, which is as high as those (0.45–0.46) of mono-DPDA-
OC6 and DPDA-OC6 that contain p,p0-hexyloxy tails at both ends of
DPDA moiety.9a Further, the actual value for a glassy film at room
temperature is still a high value of 0.3 and higher uniaxial orientation
is also maintained from S ¼ 0.66, holding the promise for application
to the fabrication of various types of optical films.
ꢀ
ꢀ
4 (a) T. R. Wolinski, A. Szymanska, T. Nasi1owski, M. A. Karpierz,
A. Kujawski and R. Dabrowski, Mol. Cryst. Liq. Cryst., 1998, 321,
557; (b) S. Agnieszka and W. Tomasz R., Mol. Cryst. Liq. Cryst.,
2002, 375, 723.
5 (a) T. Yamamoto, M. Hasegawa, A. Kanazawa, T. Shiono and
T. Ileda, J. Mater. Chem., 2000, 10, 337; (b) T. Ikeda, J. Mater.
Chem., 2003, 13, 2037.
6 (a) Q. Song, S. Gauza, H. Xianyu, S.-T. Wu, Y.-M. Liao,
C.-Y. Chang and C.-S. Hsu, Liq. Cryst., 2010, 37, 139; (b) M. Hird,
K. J. Toyne, J. W. Goodby, G. W. Gray, V. Minter, R. P. Tuffin
and D. G. McDonnell, J. Mater. Chem., 2004, 14, 1731.
7 (a) C. Sekine, K. Fujisawa, K. Iwakura and M. Minai, Mol. Cryst.
Liq. Cryst. Sci. Technol., Sect. A, 2001, 364, 711; (b) C. Sekine,
K. Iwakura, N. Konya, M. Minai and K. Fujisawa, Liq. Cryst.,
2001, 28, 1375.
8 (a) B. Grant, Mol. Cryst. Liq. Cryst., 1978, 48, 175; (b) B. Grant,
N. J. Cleak and R. J. Cox, Mol. Cryst. Liq. Cryst., 1979, 51, 209; (c)
S.-T. Wu and L. R. Dalton, J. Appl. Phys., 1989, 65, 4372; (d)
S.-T. Wu, H. B. Meng and L. R. Dalton, J. Appl. Phys., 1991, 70, 3013.
9 (a) Y. Arakawa, S. Nakajima, R. Ishige, M. Uchimura, S. kang,
G. Konishi and J. Watanabe, J. Mater. Chem., 2012, 22, 8394; (b)
M. Uchimura, S. Kang, R. Ishige, J. Watanabe and G. Konishi,
Chem. Lett., 2010, 39, 513; (c) Y. Arakawa, S. Nakajima, S. Kang,
M. Shigeta, G. Konishi and J. Watanabe, Liq. Cryst., 2012, DOI:
10.1080/02678292.2012.696730; (d) Y. Arakawa, S. Nakajima,
S. Kang, M. Shigeta, G. Konishi and J. Watanabe, J. Mater.
Chem., 2012, DOI: 10.1039/C2JM32448B.
In conclusion, we successfully polymerized methacrylate contain-
ing a DPDA moiety by anion polymerization with n-BuLi. The
obtained polymer has a wider nematic phase than the monomer, and
it vitrified under a nematic orientation. We determined the wave-
length and temperature dependence of the nematic birefringence. The
polymer exhibited a high-birefringence, with the highest value of ꢀ0.3
obtained at room temperature. Our results show that a polymer
10 V. Percec and A. Keller, Macromolecules, 1990, 23, 4347.
11 (a) Y.-H. Lu, C.-S. Hsu and S.-T. Wu, Mol. Cryst. Liq. Cryst. Sci.
Technol., Sect. A, 1993, 225, 1; (b) Y.-H. Lu, K.-T. Tsay, C.-S. Hsu
and H.-L. Chang, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A,
1994, 250, 85.
12 (a) J. S. Hwang and T. Ogawa, Polym. Bull., 1990, 23, 239; (b)
G. Burillo, T. Ogawa and J. S. Hwang, J. Polym. Sci., Part A:
Polym. Chem., 1992, 30, 2159; (c) G. Canizal, G. Burillo,
E. Munoz, R. Gleason and T. Ogawa, J. Polym. Sci., Part A:
Polym. Chem., 1994, 32, 3147.
13 E. Negishi, M. Hata and C. Xu, Org. Lett., 2000, 2, 3687.
14 T. Katoh, T. Akagi, C. Noguchi, T. Kajimoto, M. Node, R. Tanaka,
M. Nishizawa, H. Ohtsu, N. Suzuki and K. Saito, Bioorg. Med.
Chem., 2007, 15, 2736.
15 A. S. Kende and C. A. Smith, J. Org. Chem., 1988, 53, 2655.
16 I. Haller, Prog. Solid State Chem., 1975, 10, 103.
Fig. 4 Temperature dependence of birefringence measured at a wave-
length of 550 nm for SPM-DPDA-OC6 and mono-DPDA-CO6. The
dotted curves are based on eqn (3).
14348 | J. Mater. Chem., 2012, 22, 14346–14348
This journal is ª The Royal Society of Chemistry 2012