M. J. Roche et al. / Tetrahedron Letters 53 (2012) 3825–3827
3827
2H, CH2O), 2.78–2.82 (m, 6H, 7,10,13 @CH2@), 2.42–2.48 (t,
trans-1,3 Arachidonyl benzylidene glycerol (trans-ABG)
J = 7.5 Hz, 2H, 2-CH2), 2.00–2.18 (m, 4H, 4, 16-CH2), 1.69–1.80 (p,
2 H, J = 7.4 Hz, 3-CH2), 1.17–1.37 (m, 6H,17-19-CH2), 0.85–0.90 (t,
J = 6.7 Hz, 3H, 20-CH3).
1H NMR (CDCl3, 250 MHz) d 7.46–7.49 (m, 2H, Ar), 7.35–7.38
(m, 3H, Ar), 5.45 (s, 1H,), 5.34–5.41 (m, 8H, olefin H), 4.97–5.10
(sept, J = 5 Hz, 1H, CH), 4.35–4.42 (m, 2H, equatorial CH2O), 3.65–
3.73 (t, J = 9.9 Hz, 2H, axial CH2O), 2.80–2.87 (m, 6H, 7,10,13
@CH2@), 2.30–2.36 (t, J = 7.5 Hz, 2H, 2-CH2), 2.05–2.14 (m, 4H, 4,
16-CH2), 1.65–1.77 (p, 2 H, J = 7.3 Hz, 3-CH2), 1.31–1.39 (m,
6H,17-19-CH2), 0.87–0.92 (t, J = 6.9 Hz, 3H, 20-CH3).
2-Arachidonoylglycerol
cis-ABG (1,000 mg, 2.07 mmol) was added to B-chloro-
catecholborane (800 mg, 5.18 mmol) in CH2Cl2 (25 mL) at 0 °C un-
der nitrogen and protected from light. After stirring 2.5 h, TLC
(SiO2, 30% EtOAc/hexane, phosphomolybdic acid detection) showed
reformed starting material (on a MeOH/H2O quenched reaction ali-
quot, which would have reconverted the ring opened intermediate
back to the acetal). Workup involved dilution with CH2Cl2 (25 mL)
and washing (3 Â 50 mL) with degassed MeOH/H2O 1:1 to a final
neutral pH. The CH2Cl2 phase was dried over Na2SO4, concentrated
in vacuo at ambient temperature to 825 mg of an oil that contained
459 mg of 2-AG/<1% 1-AG (58%, 85% based on recovered acetal mix-
ture c/t-ABG by HPLC analysis). The oil was chromatographed on
40 g of silica gel with a 0–100% EtOAc/hexane linear gradient over
12 void volumes to afford 30 mg of trans-ABG, 200 mg of cis-ABG,
and 347 mg of 97% pure 2-AG containing 3% 1-AG that was gener-
ated by the silica gel chromatography (44% isolated yield; 58%
based on recovered cis- and trans-ABG).
Acknowledgement
This work was supported on Contracts N01DA-3-7736 and
N01DA-8-7763 from the National Institute on Drug Abuse.
References and notes
1. Kocienski, P. J. Protecting Groups, 3rd ed.; Thieme, 2003.
2. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; J.
Wiley & Sons: New York, 1999.
3. Bonner, T. G.; Bourne, E. J.; McNally, S. J. Org. Chem. 1960, 1960, 2929–2934.
4. Guindon, Y.; Bernstein, M. A.; Anderson, P. C. Tetrahedron Lett. 1987, 28, 2225–
2228.
5. Guindon, Y.; Yoakim, C.; Morton, H. E. J. Org. Chem. 1984, 49, 3912–3920.
6. Guindon, Y.; Morton, H. E.; Yoakim, C. Tetrahedron Lett. 1983, 24, 3969–3972.
7. Williams, D. R.; Sakdarat, S. Tetrahedron Lett. 1983, 24, 3965–3968.
8. King, P. F.; Stroud, S. G. Tetrahedron Lett. 1985, 26, 1415–1418.
9. Boeckman, J. R. K.; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411–1414.
10. Cartoni, A.; Margonelli, A.; Angelini, G.; Finazzi-Agr, A.; Maccarrone, M.
Tetrahedron Lett. 2004, 45, 2723–2726.
2-AG
11. Sugiura, T. Biofactors 2009, 35, 88–97.
1H NMR (CDCl3, 300 MHz) d 5.36–5.41 (m, 8H, olefin H), 4.90–
4.96 (p, J = 4.7 Hz, 1H, CH), 3.82–3.85 (dd, J = 4.8 Hz, 5.8 Hz, 4H,
CH2OH), 2.79–2.86 (m, 6H, 7,10,13 @CH2@), 2.37–2.42 (t,
J = 7.5 Hz, 2H, 2-CH2), 2.05–2.15 (m, 4H, 4, 16-CH2), 1.94–1.98
(m, 2H, OH), 1.68–1.78 (p, 2 H, J = 7.4 Hz, 3-CH2), 1.29–1.33 (m,
6H,17-19-CH2), 0.86–0.91 (t, J = 6.7 Hz, 3H, 20-CH3).
12. Seltzman, H. H. Unreported results from this lab. 2000
13. Han, L.; Razdan, R. K. Tetrahedron Lett. 1999, 40, 1631–1634.
14. Seltzman, H. H.; Fleming, D. N.; Hawkins, G. D.; Carroll, F. I. Tetrahedron Lett.
2000, 41, 3589–3592.
15. Suhara, Y.; Takayama, H.; Nakane, S.; Miyashita, T.; Waku, K.; Sugiura, T. Chem.
Pharm. Bull. 2000, 48, 903–907.
16. Stamatov, S. D.; Stawinski, J. Tetrahedron Lett. 2002, 43, 1759–1761.
17. Showler, A. J.; Darley, P. A. Chem. Rev. 1967, 67, 427–440.