Journal of the American Chemical Society
Article
component. The mixture was gently agitated for 5 min. Phase
separations were accomplished by treating the above solution with
either 25 mg NaCl, 25 mg KF, 100 mg of sucrose, or 250 μL of diethyl
ether. The biphase was gently agitated for 10 min, and the tube was
allowed to stand until clean phase separation was observed. The
aqueous phase could be measured by 1H NMR without any observable
interference from the top layer and gave the same results when the
phases were analyzed independently. The organic layer was carefully
separated using a syringe and transferred to a new NMR tube
containing the same external standard used previously.
For phase separation experiments involving imines 12−15, a
modified approach was used. An intimate stock solution of 80 mM 9
and 10 was prepared, as it was found that 9 alone was insoluble in 3:2
(v/v) AN/W. Thus, pyridoxal-5-phosphate (9) (79 mg, 0.320 mmol)
and tryptamine (10) hydrochloride (63 mg, 0.320 mmol) were
suspended in 2.4 mL of acetonitrile, diluted with 640 μL of water, and
treated with 960 μL of a 1.0 M NaOH volumetric standard. This
solution was stored at −20 °C to prevent phosphate hydrolysis.
An NMR tube containing an external standard was charged with
250 μL of 80 mM 1, 250 μL of 80 mM of 9 and 10, 250 μL of 80 mM
11, and 250 μL of 3:2 (v/v) AN/W, resulting in a 1 mL solution of 20
mM of each component. The mixture was gently agitated for 5 min.
Phase separation experiments were carried out in the same manner as
described for the library consisting of 5−8.
Phase Recombination Experiments. To demonstrate the
reversibility of these phase separations, an NMR tube containing a
phase-separated library (induced by addition of 25 mg NaCl or 100
mg sucrose) consisting of imines 5−8 and an external standard was
placed inside an NMR probe equilibrated at 70 °C. The sample was
allowed to stand for 10 min. Spinning of the sample was found to be
insufficient for mixing the organic and aqueous layers. Thus, the
sample was quickly removed from the probe and carefully agitated.
Once homogenization was achieved, the sample was quickly placed
into the probe and analyzed.
For phase separations induced by KF, a 1 mL solution containing
imines 5−8, phase separated by addition of 25 mg KF, was treated
with 46 mg of LiClO4 (1 equiv with respect to KF). This resulted in
precipitation of both LiF and KClO4, which were filtered off, leaving a
single phase filtrate.
(2) (a) Lehn, J.-M. Chem.Eur. J. 1999, 5, 2455−2463. (b) Rowan,
S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F.
Angew. Chem., Int. Ed. 2002, 41, 898−952. (b) Corbett, P. T.; Leclaire,
J.; Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.; Otto, S. Chem.
Rev. 2006, 106, 3652−3711. (c) Ladame, S. Org. Biomol. Chem. 2008,
6, 219−226. (d) Dynamic Combinatorial Chemistry; Miller, B. L., Ed.;
Wiley: Chichester, U.K., 2010. (e) Dynamic Combinatorial Chemistry;
Reek, J. N. H., Otto, S., Eds.; Wiley-VCH: Weinheim, Germany, 2010.
(f) Hunt, R. A. R.; Otto, S. Chem. Commun. 2011, 47, 847−855.
(g) Belowich, M. E.; Stoddart, J. F. Chem. Soc. Rev. 2012, 41, 2003−
2024.
(3) Giuseppone, N.; Lehn, J.-M. Chem.Eur. J. 2006, 12, 1715−
1722.
(4) (a) Baxter, P. N. W.; Lehn, J.-M.; Rissanen, K. Chem. Commun.
1997, 1323−1324. (b) Chow, C.; Fujii, S.; Lehn, J.-M. Chem. Commun.
2007, 4363−4365. (c) Barboiu, M.; Dumitru, F.; Legrand, Y.-M.; Petit,
E.; van der Lee, A. Chem. Commun. 2009, 2192−2194.
(5) Belenguer, A. M.; Frisc
Sci. 2011, 2, 696−700.
̌ ̌ ́
ic, T.; Day, G. M.; Sanders, J. K. M. Chem.
(6) (a) Ingerman, L. A.; Waters, M. J. Org. Chem. 2009, 74, 111−117.
(b) Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem.Eur. J. 2010, 17,
248−258.
(7) Giuseppone, N.; Lehn, J.-M. Angew. Chem. Int. Ed 2006, 45,
4619−4624.
(8) (a) Giuseppone, N.; Schmitt, J.-L.; Lehn, J.-M. J. Am. Chem. Soc.
2006, 128, 16748−16763. (b) Giuseppone, N.; Lehn, J.-M. J. Am.
Chem. Soc. 2004, 126, 11448−11489. (c) Giuseppone, N.; Fuks, G.;
Lehn, J.-M Chem.Eur. J. 2006, 12, 1723−1735. (d) Fujii, S.; Lehn, J.-
M. Angew. Chem., Int. Ed. 2009, 48, 7635−7638.
(9) (a) Baxter, P. N. W.; Khoury, R. G.; Lehn, J.-M.; Baum, G.;
Fenske, D. Chem.Eur. J. 2000, 6, 4140−4148. (b) Ramirez, J.;
Stadler, A.-M.; Kyritsakas, N.; Lehn, J.-M. Chem. Commun. 2007, 237−
239.
(10) See for instance: (a) Huc, I.; Lehn, J.-M. Proc. Natl. Acad. Sci.
U.S.A. 1997, 94, 2106−2110. (b) Berl, V.; Huc, I.; Lehn, J.-M.;
DeCian, A.; Fischer, J. Eur. J. Org. Chem. 1999, 3089−3094. (c) Furlan,
R. L. E.; Ng, Y.; Otto, S.; Sanders, J. K. M J. Am. Chem. Soc. 2001, 123,
8876−8883. (d) Au-Yeung, H. Y.; Cougnon, F. B. L.; Otto, S.; Pantos,
G. D.; Sanders, J. K. M. Chem. Sci. 2010, 1, 567−574. (e) Ghosh, S.;
Ingerman, L. A.; Frye, A.; Lee, S. J.; Gagne, M. R.; Waters, M. L. Org.
̧
For phase separations using diethyl ether, the reaction described
above was scaled up 4-fold and treated with 1 mL of diethyl ether,
upon which a phase separation occurred. The biphasic mixture was
then placed on a rotary evaporator, and the ether evaporated at 50 °C
at 1 atm until the phases had reunited.
́
Lett. 2010, 12, 1860−1863. (f) McNaughton, B. R.; Miller, B. L. Org.
Lett. 2006, 8, 1803−1806. (g) McNaughton, B. R.; Gareiss, P. C.;
Miller, B. L. J. Am. Chem. Soc. 2007, 129, 11306−11307.
(11) (a) Lehn, J.-M. Prog. Polym. Sci. 2005, 30, 814−831. (b) Lehn,
J.-M. Aust. J. Chem. 2010, 63, 611−623 and references therein..
(c) Maoulin, E.; Cormos, G.; Giuseponne, N. Chem. Soc. Rev. 2012,
41, 1031−1049.
ASSOCIATED CONTENT
■
S
* Supporting Information
Preparation of 2, tables describing product distributions, and
mole fractions of AN/W. This material is available free of
(12) (a) Chen, X.; Dam, M. A.; Ono, K.; Mal, A. K.; Shen, H.; Nutt,
S. R.; Sheran, K.; Wudl, F. Science 2002, 295, 1698−1702. (b) Chen,
X.; Wudl, F.; Mal, A. K.; Shen, H.; Nutt, S. R. Macromolecules 2006, 36,
1802−1807. (c) Reutenauer, P.; Buhler, E.; Boul, P. J.; Candau, S. J.;
Lehn, J.-M. Chem.Eur. J. 2009, 15, 1893−1900. (d) Roy, N; Lehn,
J.-M. Chem. Asian J. 2011, 6, 2419−2425.
AUTHOR INFORMATION
■
Corresponding Author
(13) Sreenivasachary, N.; Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A.
2005, 102, 5938−5948.
(14) For dynamic processes in biphasic and transport systems, see:
(a) Perez-Fernandez, R.; Pittelkow, M.; Belenguer, A. M.; Sanders, J.
K. M. Chem. Commun. 2008, 1738−1740. (b) Perez-Fernandez, R.;
Pittelkow, M.; Belenguer, A. M.; Lane, L. A.; Robinson, C. V.; Sanders,
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENTS
J. K. M. Chem. Commun. 2009, 3708−3710. (c) Saggiomo, V.; Luning,
̈
■
U. Chem. Commun. 2009, 3711−3713.
N.H. thanks the University of Strasbourg and the ANR 2010
BLAN-717-1 project for postdoctoral fellowships. This work
has been supported financially by the University of Strasbourg,
the CNRS and the ANR 2010 BLAN-717-1 project.
(15) (a) Folmer-Andersen, J. F.; Lehn, J.-M. J. Am. Chem. Soc. 2011,
133, 10966−10973. (b) Folmer-Andersen, J. F.; Lehn, J.-M. Angew.
Chem., Int. Ed. 2009, 48, 7664−7667.
(16) Although acetonitrile/water mixtures have the appearance and
consistency of homogeneous solution and exhibit miscibility at any
volumetric ratio at ambient temperature, data from molecular
dynamics,17 IR,18 Raman,19 NMR,20 SANS,21 and XRD22 have
indicated that acetonitrile/water mixtures exhibit microheterogeneity
REFERENCES
■
(1) (a) Lehn, J.-M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4763−4768.
(b) Lehn, J.-M. Chem. Soc. Rev. 2007, 36, 151−160.
G
dx.doi.org/10.1021/ja305379c | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX