heterocyclic compounds in nature and their transformation
has attracted much attention. The 3-substituted indoles
have also been reported to be compatible with dearomatiza-
tion procedures such as iminium catalysis,1e,f,iÀk cycloaddi-
tion,1h,6m and the allylic alkylation reaction.6bÀd,i However,
the dearomative arylation of 3-substituted indole via the
Pd-catalyzed cross-coupling reaction has been rarely
explored9,10 despite the significant importance of the target
spirocycles. Given our interest in developing dearomatiza-
tion reactions of indole,6i,l we recently found that indol-
3-yl aryl bromide could be subjected to Pd-catalyzed
dearomative arylation reaction (Scheme 1). This intramo-
lecular cross-coupling type dearomatization of indol-3-yl
aryl bromides provides spiroindolenine derivatives,11,12
and the utilization of readily available phosphine ligands
potentially allows an asymmetric version of this reaction.
Herein we report our preliminary results on this subject.
summarized in Table 1. With the catalyst generated from
[Pd(C3H5)Cl]2 (2.5 mol %) and PPh3 (7.5 mol %), the
dearomatization reaction of 1a in the presence of K2CO3
(1.5 equiv) in refluxed dioxane (0.2 M) could proceed
smoothly, affording desired product 2a in 85% yield
(entry 1). Further screening of various ligands such
as P(nBu)3, SIPr HBF4, phosphoramidite L1, XPhos,
3
XPhos(tBu), QPhos, and P1 revealed that phosphora-
midite L113 gave a slightly higher yield (88%, entry 4). It
was worth mentioning that bidentate ligands such as
Phox, dppp, and dppf did not lead to the formation of
desired product but complete recovery of the starting
material (entries 9À11).
Table 1. Screening of Ligandsa
Scheme 1. Dearomative Arylation of 3-Substituted Indoles
We began our work by testing 3-(3-(2-bromophenyl)-
propyl)-1H-indole 1a as the model substrate with readily
available palladium precursors and ligands. The results are
(5) For a review: (a) Schultz, A. G. Chem. Commun. 1999, 1263. (b)
Subba Rao, G. S. R. Pure Appl. Chem. 2003, 75, 1443. For a recent
example: (c) Melero, C.; Herrera, R. P.; Guijarro, A.; Yus, M. Chem.;
Eur. J. 2007, 13, 10096.
entry
L
yield (%)b
entry
L
yield (%)b
(6) For Pd-catalyzed dearomatization procedures: (a) Wiegand, S.;
€
Schafer, H. J. Tetrahedron 1995, 51, 5341. (b) Kimura, M.; Futamata,
M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 4592. (c) Trost,
B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314. (d) Kagawa, N.;
Malerich, J. P.; Rawal, V. H. Org. Lett. 2008, 10, 2381. (e) Bedford,
R. B.; Butts, C. P.; Haddow, M. F.; Osborne, R.; Sankey, R. F. Chem.
Commun. 2009, 4832. (f) Nemoto, T.; Ishige, Y.; Yoshida, M.; Kohno,
Y.; Kanematsu, M.; Hamada, Y. Org. Lett. 2010, 12, 5020. (g) Wang,
D.-S.; Ye, Z.-S.; Chen, Q.-A.; Zhou, Y.-G.; Yu, C.-B.; Fan, H.-J.; Duan,
Y. J. Am. Chem. Soc. 2011, 133, 8866. For Ir-catalyzed dearomatization
procedures: (h) Legault, C. Y.; Charette, A. B. J. Am. Chem. Soc. 2005,
127, 8966. (i) Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L. J. Am. Chem.
Soc. 2010, 132, 11418. (j) Wu, Q.-F.; Liu, W.-B.; Zhuo, C.-X.; Rong,
Z.-Q.; Ye, K.-Y.; You, S.-L. Angew. Chem., Int. Ed. 2011, 50, 4455. (k)
Zhuo, C.-X.; Liu, W.-B.; Wu, Q.-F.; You, S.-L. Chem. Sci. 2012, 3, 205.
(l) Wu, Q.-F.; Zheng, C.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51,
1680. For Rh-catalyzed dearomatization procedures: (m) Reddy, R. P.;
Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 10312. (n) Lian, Y.;
Davies, H. M. L. J. Am. Chem. Soc. 2010, 132, 440. For Au(I)-catalyzed
dearomatization procedure: (o) Cera, G.; Chiarucci, M.; Mazzanti, A.;
Mancinelli, M.; Bandini, M. Org. Lett. 2012, 14, 1350.
(7) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.; Buchwald, S. L. Acc.
Chem. Res. 1998, 31, 805. (b) Dounay, A. B.; Overman, L. E. Chem. Rev.
2003, 103, 2945. (c) Negishi, E. J. Organomet. Chem. 1999, 576, 179. (d)
Fairlamb, I. J. S. Chem. Soc. Rev. 2007, 36, 1036. (e) Martin, R.;
Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. (f) Kambe, N.;
Iwasakia, T.; Teraob, J. Chem. Soc. Rev. 2011, 40, 4937.
(8) (a) Garcıa-Fortanet, J.; Kessler, F.; Buchwald, S. L. J. Am. Chem.
Soc. 2009, 131, 6676. (b) Rousseaux, S.; Garcıa-Fortanet, J.; Del Aguila
Sanchez, M. A.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 9282.
(9) Bedford, R. B.; Fey, N.; Haddow, M. F.; Sankey, R. F. Chem.
Commun. 2011, 47, 3649.
1
PPh3
85
7
QPhos
P1
63
2c
3
P(nBu)3
N. D.
55
8
complex
N. D.
N. D.
N. D.
SIPr HBF4
9c
10c
11c
Phox
dppp
dppf
3
4
L1
88
5
6c
XPhos
XPhos(tBu)
61
N. D.
a Reaction conditions: [Pd(C3H5)Cl]2 (2.5 mol %), L (7.5 mol %),
K2CO3 (1.5 equiv), and 1a (0.2 mmol) in dioxane (1.0 mL, 0.2 M), reflux.
b Isolated yields. c Conversions determined by 1H NMR.
(11) For a book: (a) Rahman, A. U.; Basha, A. Indole Alkaloids;
Hawood Academic Publishers: Amsterdam, 1997. For examples: (b) Chou,
T. Q. Chin. J. Physiol. 1931, 5, 345. (c) Liu, C.-T.; Wang, Q.-W.; Wang,
C.-H. J. Am. Chem. Soc. 1981, 103, 4634. (d) Verbitski, S. M.; Mayne,
C. L.; Davis, R. A.; Concepcion, G. P.; Ireland, C. M. J. Org. Chem.
2002, 67, 7124. (e) Numata, A.; Takahashi, C.; Ito, Y.; Takada, T.;
Kawai, K.; Usami, Y.; Matsumura, E.; Imachi, M.; Ito, T.; Hasegawa,
T. Tetrahedron Lett. 1993, 34, 2355. (f) Jadulco, R.; Edrada, R. A.; Ebel,
R.; Berg, A.; Schaumann, K.; Wray, V.; Steube, K.; Proksch, P. J. Nat.
Prod. 2004, 67, 78. (g) Somei, M. S.; Yamada, F. Y. Nat. Prod. Rep. 2005,
22, 73.
(12) Notably, intermolecular reaction of 3-subsituted indole with
ArÀX with palladium catalyst generally afford indole 2-arylation
product. For selected examples: (a) Wang, X.; Gribkov, D. V.; Sames,
D. J. Org. Chem. 2007, 72, 1476. (b) Ruiz-Rodrıguez, J.; Albericio, F.;
Lavilla, R. Chem.;Eur. J. 2010, 16, 1124.
(10) During the preparation of this manuscript, Zhu and Rawal
reported a Pd-catalyzed benzylation reaction of indoles:Zhu, Y.; Rawal,
V. H. J. Am. Chem. Soc. 2012, 134, 111.
(13) de Vries, A. H. M.; Meetsma, A.; Feringa, B. L. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 2374.
Org. Lett., Vol. 14, No. 14, 2012
3773