C. M. Park et al. / Bioorg. Med. Chem. Lett. 21 (2011) 698–703
703
The functional efficacy of compound 8b was evaluated by mea-
References and notes
suring 5-HT-stimulated cAMP accumulation using HeLa cell line
expressing the cloned human 5-HT6 receptor.17 Compound 8b
significantly inhibited 5-HT-stimulated cAMP accumulation
(IC50 = 188 nM), indicating that compound 8b is a potent 5-HT6
receptor antagonist.
Pharmacokinetic studies demonstrated that 8d and 8g were
more brain penetrant (B/P = 0.41 and 0.50, respectively) than 2b
(B/P = 0.18). This improvement may be due to the reduction of
the number of H-donors of 8d and 8g, and also due to the higher
lipophilicity of 8d (log D = 3.2; polar surface area (PSA) = 69.3)
and 8g (log D = 3.6; PSA = 69.3) than 2b (log D = 2.99;
PSA = 100.6).18
Compounds 8b–d, 8g, 8h, and 8j were examined further for
binding affinity toward several serotonergic and dopaminergic
receptors (Table 3). All compounds displayed higher affinity for
the serotonin 5-HT6 receptor than for the serotonin 5-HT1A or
dopamine (D2–D4) receptors. Compound 8g produced moderate
binding affinity for the 5-HT2A and 5-HT2C receptors showing 48
and 30 nM of IC50 values, respectively. Meanwhile, compounds
8h and 8j expressed potent binding affinities for the 5-HT2C
receptor, with a severe decrease of the affinity for the 5-HT2A
receptor.
In conclusion, we report the synthesis and biological profiles of
a series of piperazinyl derivatives of 1-(arylsulfonyl)-2,3-dihydro-
1H-quinolin-4-ones. Compounds 8d and 8g showed improved
brain penetration, which indicated quinolone core is a suitable
scaffold for the further development for serotonin 5-HT6 receptor
ligands. Compounds 8h and 8j showed high binding affinity
toward both 5-HT6 and 5-HT2C receptors and good selectivity over
other related serotonergic and dopaminergic receptor subtypes.
Additional SAR and pharmacological investigation of such com-
pounds are now in progress.
1. Kohen, R.; Metcalf, M. A.; Kahn, N.; Druck, T.; Huebner, K.; Lachowicz, J. E.;
Meltzer, H. Y.; Sibley, D. R.; Roth, B. L.; Hamblin, M. W. J. Neurochem. 1996, 66, 47.
2. Roberts, J. C.; Reavill, C.; East, S. Z.; Harrison, P. J.; Patel, S.; Routledge, C.; Leslie,
R. A. Brain Res. 2002, 934, 49.
3. Roth, B. L.; Craig, S. C.; Choudhary, M. S.; Uluer, A.; Monsma, F. J.; Shen, Y.;
Meltzer, H. Y.; Sibley, D. R. J. Pharmacol. Exp. Ther. 1994, 268, 1403.
4. Bourson, A.; Borroni, E.; Austin, R. H.; Monsma, F. J.; Sleight, A. J. J. Pharmacol.
Exp. Ther. 1995, 274, 173.
5. Sleight, A. J.; Monsma, F. J.; Borroni, E.; Austin, R. H.; Bourson, A. Behav. Brain
Res. 1996, 73, 245.
6. Sleight, A. J.; Boess, F. G.; Bos, M.; Levet-Trafit, B.; Riemer, C.; Bourson, A. Br. J.
Pharmacol. 1998, 124, 556.
7. Bromidge, S. M.; Brown, A. M.; Clarke, S. E.; Dodgson, K.; Gager, T.; Grassam, H.
L.; Jeffrey, P. M.; Joiner, G. F.; King, F. D.; Middlemiss, D. N.; Moss, S. F.;
Newman, H.; Riley, G.; Routledge, C.; Wyman, P. J. Med. Chem. 1999, 42, 202.
8. Tsai, Y.; Dukat, M.; Slassi, A.; MacLean, N.; Demchyshyn, L.; Savage, J. E.; Roth,
B. L.; Hufesein, S.; Lee, M.; Glennon, R. A. Bioorg. Med. Chem. Lett. 2000, 10, 2295.
9. Boes, M.; Riemer, C.; Stadler, H. Eur. Pat. Appl. EP941994, 1999.
10. López-Rodríguez, M. L.; Benhamú, B.; Fuente, T.; Sanz, A.; Pardo, L.; Campillo,
M. J. Med. Chem. 2005, 48, 4216.
11. Holenz, J.; Mercè, R.; Díaz, J. L.; Guitart, X.; Codony, X.; Dordal, A.; Romero, G.;
Torrens, A.; Mas, J.; Andaluz, B.; Hernández, S.; Monroy, X.; Sánchez, E.;
Hernández, E.; Pérez, R.; Cubí, R.; Sanfeliu, O.; Buschmann, H. J. Med. Chem.
2005, 48, 1781.
12. Zhao, S.; Berger, J.; Clark, R. D.; Sethofer, S. G.; Krauss, N. E.; Brothers, J. M.;
Martin, R. S.; Misner, D. L.; Schwab, D.; Alexandrova, L. Bioorg. Med. Chem. Lett.
2007, 17, 3504.
13. (a) Drummond, A. H.; Bucher, F.; Levitan, I. B. Brain Res. 1980, 184, 163; (b)
Drummond, A. H.; Bucher, F.; Levitan, I. B. J. Biol. Chem. 1980, 255, 6679.
14. Leonard, N. L.; Boyer, J. H. J. Org. Chem. 1950, 15, 42.
15. Data for 13a: 1H NMR (200 MHz, CDCl3) d 1.18 (d, J = 6.9 Hz, 3H, NHCHCH3),
1.58 (d, J = 6.9 Hz, 3H, PhCHCH3), 2.21–2.43 (m, 2H, CH2), 4.81 (m, 1H, NCH),
4.99 (m, 1H, PhCH), 7.07 (m, 1H, ArH), 7.26–7.62 (m, 11H, ArH), 7.83–7.92 (m,
3H, ArH + NH), 8.27 (d, J = 2.0 Hz, 1H, ArH), 9.45 (br s, 1H, NNH); mp 183–
186 °C; MS (EI) m/e 410 (M+À148), 191, 127, 105; Crystallographic data
(excluding structure factors) for the structure in this paper have been
deposited with Cambridge Crystallographic Data Center (CCDC) as
supplementary publication numbers CCDC 796561.
16. Data for 8g-(R): 1H NMR (200 MHz, CDCl3) d 1.29 (d, J = 6.9 Hz, 3H, CH3), 2.17
(dd, J = 17.7 Hz, 1.6 Hz, 1H, COCHH), 2.31 (s, 3H, NCH3), 2.40–2.57 (m, 5H,
COCHH and 2NCH2), 2.93 (m, 4H, 2NCH2), 4.87 (m, 1H, CH), 6.94 (dd, J = 7.7 Hz,
1.8 Hz, 1H, ArH), 7.38–7.66 (m, 5H, ArH), 7.81–7.85 (m, 3H, ArH), 8.18 (d,
J = 1.6 Hz, 1H, ArH); mp 65–70 °C; MS (EI) m/e 449 (M+), 434, 405; HRMS m/e
calcd for C25H27N3O3S 449.1773; found 449.1771.
Supplementary data
17. Routledge, C.; Bromidge, S. M.; Moss, S. F.; Price, G. W.; Hirst, W.; Newman, H.;
Riley, G.; Gager, T.; Stean, T.; Upton, N.; Clarke, S. E.; Brown, A. M.; Middlemiss,
D. N. Br. J. Pharmacol. 2000, 130, 1606.
Supplementary data associated with this article can be found, in
18. Pardridge, W. M. Adv. Drug Delivery Rev. 1995, 15, 5.