4752
M. Chwalek, K. Plꢀe / Tetrahedron Letters 45 (2004) 4749–4753
OBz
O
H
Br
References and notes
OBz
BzO
BzO
O
O
BzO
BzO
BzO
1. (a) Wolfram, M. L.; Pittet, A. O.; Gillam, I. C. Proc. Natl.
Acad. Sci. U.S.A. 1961, 47, 700–705; (b) Wolfram, M. L.;
Lineback, D. R. In Methods in Carbohydrate Chemistry
and Biochemistry; Whistler, R. L., Wolfram, M. L. , Eds.;
Academic: New York, London, 1963; Vol. 2, pp 341–345.
2. A few selected references are: (a) Wolfram, M. L.;
Igarashi, K.; Koizumi, K. J. Org. Chem. 1965, 30, 3841–
3844; (b) Koto, S.; Uchida, T.; Zen, S. Chem. Lett. 1972,
1049–1052; (c) Pfaffli, P. J.; Hixon, S. H.; Anderson, L.
Carbohydr. Res. 1972, 23, 195–206; (d) Takiura, K.;
Kakehi, K.; Honda, S. Chem. Pharm. Bull. 1973, 21,
523–527; (e) Koto, S.; Uchida, T.; Zen, S. Bull. Chem. Soc.
Jpn. 1973, 46, 2520–2523; (f) Berry, J. M.; Dutton, G. S.
Carbohydr. Res. 1974, 38, 339–345.
O
HBr / H+
OBz
BzO
BzO
O
O
O
R
BzO
BzO
O
R
R = CN
OBz
OBz
and/or
22
25
CONH2
OBz
OBz
Br
OR
H
H
O
Br
O
BzO
BzO
BzO
BzO
BzO
OBz
OR
23
24
Scheme 6.
3. Demchenko, A. V. Synlett 2003, 9, 1225–1240.
4. Lemieux, R. U.; Hendriks, K. B.; Stick, R. V.; James, K.
J. Am. Chem. Soc. 1975, 97, 4056–4062.
5. Lindberg, B. Acta Chem. Scand. 1949, 3, 1355–1357.
25
22
ꢀ
6. Ple, K.; Chwalek, M.; Voutquenne-Nazabadioko, L. Eur.
J. Org. Chem. 2004, 1588–1603.
7. Typical procedure for the acid catalyzed rearrangement:
Hydrogen bromide (33% in AcOH; 10 mL) was added
dropwise to a solution of amygdalin heptabenzoate 4
(2.0 g, 1.55 mmol) in CH2Cl2 (20 mL) at room tempera-
ture. The reaction was stirred for 6 h before pouring into
ice water and extracting with CH2Cl2. The combined
organic layers were washed with H2O and NaHCO3 (sat.)
before drying over Na2SO4. Column chromatography of
the crude reaction mixture (30% EtOAc, 5% CH2Cl2, 65%
cyclohexane) gave 1.25 g of the major epimer of 5 along
with 0.25 g of the minor one.
OBz
OBz
OBz
Br
OR'
H
H
O
H
Br
O
O
O
BzO
BzO
BzO
BzO
BzO
BzO
Br
OR'
OBz
BzO
27
O
OR'
23
Ph
26
Scheme 7.
Exocyclic bond cleavage with orthoester formation and
a complex mixture of products may also be a part of the
reaction mechanism and cannot be excluded. In the tri-
and tetrasaccharide reactions, small quantities of mono-
and diglucosyl bromides were detected as nonpolar
impurities. Analysis of the polar reaction impurities for
these reactions was also attempted, but the complexity
of the mixtures prevented characterization of any of
these compounds.
Compound 5 major epimer: Rf ¼ 0:4 (cyclohexane/EtOAc,
1
1:1); Selected NMR data: H NMR (500 MHz, CDCl3): d
3.82 (d, 1H, J ¼ 10:6 Hz, H-6), 3.94 (m, 1H, H-5), 4.06
(dd, 1H, J ¼ 11:6, J ¼ 5:5 Hz, H-6), 4.45 (dd, 1H,
J ¼ 12:1, J ¼ 5:9 Hz, H-60), 4.59 (m, 1H, H-50), 4.69 (d,
1H, J ¼ 7:8 Hz, H-1), 4.70 (dd, 1H, J ¼ 12:0, J ¼ 2:2 Hz,
H-60), 5.29 (m, 2H, H-2, CH), 5.42 (dd, 1H, J ¼ 10:2,
J ¼ 3:7 Hz, H-20), 5.46 (t, 1H, J ¼ 9:8 Hz, H-4), 5.57 (d,
1H, J ¼ 3:7 Hz, H-10), 5.68 (d, 1H, J ¼ 2:7 Hz, NH), 5.75
(t, 1H, J ¼ 9:6 Hz, H-3), 5.77 (t, 1H, J ¼ 9:7 Hz, H-40),
6.37 (t, 1H, J ¼ 9:9 Hz, H-30), 7.05 (d, 1H, J ¼ 2:6 Hz,
NH); 13C NMR (125 MHz, CDCl3): d 62.9 (C-60), 65.6 (C-
6), 68.2 (C-50), 68.7 (C-4), 69.3 (C-40), 70.3 (C-30), 71.9
(C-2), 72.0 (C-20), 72.3 (C-3), 73.6 (C-50), 80.2 (CH), 96.0
(C-10), 98.4 (C-1), 171.8 (CONH2); ESI-MS m=z 1227
(M+Na)þ; Anal. Calcd for C69H58NO19: C, 68.76; H, 4.85;
N, 1.16. Found: C, 68.45; H, 4.79; N, 1.28.
Compound 5 minor epimer: Rf ¼ 0:32 (cyclohexane/
EtOAc, 1:1); Selected NMR data: 1H NMR (500 MHz,
CDCl3): d 3.53 (d, 1H, J ¼ 10:3 Hz, H-6), 3.91 (m, 2H, H-
5, H-6), 4.37 (dd, 1H, J ¼ 12:0, J ¼ 5:7 Hz, H-60), 4.43
(m, 1H, H-50), 4.55 (dd, 1H, J ¼ 12:1, J ¼ 2:6 Hz, H-60),
4.93 (d, 1H, J ¼ 7:9 Hz, H-1), 5.19 (s, 1H, CH), 5.21 (d,
1H, J ¼ 3:7 Hz, H-10), 5.30 (dd, 1H, J ¼ 9:7, J ¼ 7:9 Hz,
H-2), 5.39 (dd, 1H, J ¼ 10:1, J ¼ 3:8 Hz, H-20), 5.44 (d,
1H, J ¼ 2:8 Hz, NH), 5.56 (t, 1H, J ¼ 9:7 Hz, H-4), 5.69
(t, 1H, J ¼ 9:9 Hz, H-40), 5.83 (t, 1H, J ¼ 9:7 Hz, H-3),
6.29 (t, 1H, J ¼ 9:9 Hz, H-30), 6.84 (d, 1H, J ¼ 2:8 Hz,
NH); 13C NMR (125 MHz, CDCl3): d 62.8 (C-60), 65.9 (C-
6), 68.0 (C-50), 68.6 (C-4), 69.4 (C-40), 70.5 (C-30), 71.6
(C-20), 72.3 (C-2), 72.6 (C-3), 73.5 (C-5), 82.0 (CH), 96.2
(C-10), 100.1 (C-1), 172.0 (CONH2); ESI-MS m=z 1227
(M+Na)þ.
In conclusion, isomaltose trichloroacetimidate was
conveniently synthesized from D-amygdalin in five steps
and 60% overall yield. In spite of the fact that isomaltose
is commercially available (although expensive), and can
be produced in large quantities through hydrolysis or
enzymatic processes, this synthesis is easily accessible,
and avoids the preparation of monosaccharide precur-
sors as well as the necessity of controlling the glycosyl-
ation reaction for 1,2-cis bond formation. We have
shown that this reaction is applicable to tri- and tetra-
saccharide precursors, and further investigation is
underway to better determine the mechanism as well as
the scope and limitations of this reaction.
Acknowledgements
We would like to thank the CNRS and the French
Research Ministry for financial support and the Ph.D.
scholarshipfor M.C. We would also like to thank Prof.
A. Haudrechey for useful discussions.
8. Campagna, F.; Carroti, A.; Casini, G. Tetrahedron Lett.
1977, 1813–1816.