Journal of the American Chemical Society
Page 4 of 6
VCH: Weinheim, 2008; (c) Zard, S. Z. Radical Reactions in Organic Syn-
the existence of e-Co(III)-alkyl radical intermediate II, which
was apparently trapped by two molecules of TEMPO at the α-
and ε-carbon centers (Fig. S3). Third, the enantiopure (R)-4a was
prepared to evaluate the stereochemistry of the catalytic alkyla-
tion by the achiral catalyst [Co(P1)] (Scheme 3c). The tertiary C–
H bond was alkylated to form α,α-disubstituted pyrrolidine 5a as
a mixture of enantiomers. Chiral HPLC analysis showed that (S)-
5a was the major enantiomer with 81% ee. The results indicate
that the resulting radical intermediate II from HAA of (R)-4a un-
derwent radical substitution with retention of stereochemistry at
a much faster rate than racemization (Fig. S4). Last, the Co(III)-
supported alkyl radical intermediates from the reaction of 1a by
[Co(P1)] could be directly detected by HRMS (Fig. S5) and
trapped by phenyl N-tert-butylnitrone (PBN) to give the charac-
teristic EPR signal (Fig. S6). Together, these results support the
stepwise radical mechanism for Co(II)-based cyclization through
metalloradical C–H alkylation (Scheme 2a).
thesis; Oxford University Press: Oxford, 2003; (d) Shaw, M. H.; Twilton,
J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898; (e) Yan, M.; Lo,
J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
(2) For select recent examples, see: (a) Kern, N.; Plesniak, M. P.;
McDouall, J. J. W.; Procter, D. J. Nat. Chem. 2017, 9, 1198; (b) Adams,
K.; Ball, A. K.; Birkett, J.; Brown, L.; Chappell, B.; Gill, D. M.; Lo, P. K.
T.; Patmore, N. J.; Rice, C. R.; Ryan, J.; Raubo, P.; Sweeney, J. B. Nat.
Chem. 2017, 9, 396; (c) Brill, Z. G.; Grover, H. K.; Maimone, T. J.
Science 2016, 352, 1078; (d) Logan, M. M.; Toma, T.; Thomas-Tran, R.;
Du Bois, J. Science 2016, 354, 865; (e) Hashimoto, T.; Kawamata, Y.;
Maruoka, K. Nat. Chem. 2014, 6, 702.
1
2
3
4
5
6
7
8
9
(3) Walton, J. C. Acc. Chem. Res. 1998, 31, 99.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) Bougeard, P.; Bury, A.; Cooksey, C. J.; Johnson, M. D.;
Hungerford, J. M.; Lampman, G. M. J. Am. Chem. Soc. 1982, 104, 5230.
(5) For reviews and select examples, see: (a) Sibi, M. P.; Manyem, S.;
Zimmerman, J. Chem. Rev. 2003, 103, 3263; (b) Brimioulle, R.; Lenhart,
D.; Maturi, M. M.; Bach, T. Angew. Chem., Int. Ed. 2015, 54, 3872; (c)
Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. Science
2016, 354, 1391; (d) Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.;
Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681; (e) Lin,
J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am.
Chem. Soc. 2016, 138, 9357; (f) Huo, H.; Shen, X.; Wang, C.; Zhang, L.;
Rose, P.; Chen, L.-A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E.
Nature 2014, 515, 100; (g) Nicewicz, D. A.; MacMillan, D. W. C. Science
2008, 322, 77.
Scheme 3. Mechanistic Studies for Co(II)-Catalyzed Stepwise
Radical Cyclization
(6) For reviews and highlights on Co(II)-based MRC, see: (a) Miyabe,
H.; Kawashima, A.; Yoshioka, E.; Kohtani, S. Chem. Eur. J. 2017, 23,
6225; (b) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58;
(c) Pellissier, H.; Clavier, H. Chem. Rev. 2014, 114, 2775; (d) Lu, H. J.;
Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899; (e) Doyle, M. P. Angew.
Chem., Int. Ed. 2009, 48, 850.
(7) For select examples on Ti(III)-based MRC, see: (a) Zhang, Y.-Q.;
Vogelsang, E.; Qu, Z.-W.; Grimme, S.; Gansäuer, A. Angew. Chem., Int.
Ed. 2017, 56, 12654; (b) Hao, W.; Wu, X.; Sun, J. Z.; Siu, J. C.;
MacMillan, S. N.; Lin, S. J. Am. Chem. Soc. 2017, 139, 12141; (c) Gan-
säuer, A.; Hildebrandt, S.; Vogelsang, E.; Flowers II, R. A. Dalton Trans.
2016, 45, 448; (d) Gansäuer, A.; Fleckhaus, A.; Lafont, M. A.; Okkel, A.;
Kotsis, K.; Anoop, A.; Neese, F. J. Am. Chem. Soc. 2009, 131, 16989.
(8) For detailed experimental and theoretical studies on the radical
mechanism involving α-Co(III)-alkyl radical (also known as Co(III)-
carbene radical) intermediates for olefin cyclopropanation, see: (a) Lu, H.
J.; Dzik, W. I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X. P. J. Am.
Chem. Soc. 2011, 133, 8518; (b) Belof, J. L.; Cioce, C. R.; Xu, X.; Zhang,
X. P.; Space, B.; Woodcock, H. L. Organometallics 2011, 30, 2739; (c)
Dzik, W. I.; Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B. J. Am.
Chem. Soc. 2010, 132, 10891.
(9) For select examples on asymmetric Co(II)-MRC, see: (a) Wang, Y.;
Wen, X.; Cui, X.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2017, 139,
1049; (b) Cui, X.; Xu, X.; Jin, L.-M.; Wojtas, L.; Zhang, X. P. Chem. Sci.
2015, 6, 1219 (c) Xu, X.; Lu, H. J.; Ruppel, J. V.; Cui, X.; de Mesa, S. L.;
Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292; (d) Cui,
X.; Xu, X.; Lu, H. J.; Zhu, S. F.; Wojtas, L.; Zhang, X. P. J. Am. Chem.
Soc. 2011, 133, 3304; (e) Zhu, S. F.; Ruppel, J. V.; Lu, H. J.; Wojtas, L.;
Zhang, X. P. J. Am. Chem. Soc. 2008, 130, 5042; (f) Fantauzzi, S.; Gallo,
E.; Rose, E.; Raoul, N.; Caselli, A.; Issa, S.; Ragaini, F.; Cenini, S.
Organometallics 2008, 27, 6143; (g) Chen, Y.; Fields, K. B.; Zhang, X.
P. J. Am. Chem. Soc. 2004, 126, 14718; For select examples on
nonasymmetric Co(II)-MRC, see:(h) Roy, S.; Das, S. K.; Chattopadhyay,
B. Angew. Chem., Int. Ed. 2018, 57, 2238; (i) te Grotenhuis, C.; van den
Heuvel, N.; van der Vlugt, J. I.; de Bruin, B. Angew. Chem., Int. Ed. 2018,
57, 140; (j) Reddy, A. R.; Hao, F.; Wu, K.; Zhou, C.-Y.; Che, C. M.
Angew. Chem., Int. Ed. 2016, 55, 1810; (k) Zhang, J.; Jiang, J.; Xu, D.;
Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang, Y.; Wan, X. Angew. Chem.,
Int. Ed. 2015, 54, 1231.
In summary, we have broadened the applicability of the newly
emerged radical cyclization mode via metalloradical catalysis
(MRC), which involves sequential radical H-atom abstraction
and radical substitution (HAA-RS), as a catalytic C–C bond
forming strategy for stereoselective construction of pyrrolidines
and other common 5-membered cyclic compounds from C–H
substrates. This alternative radical cyclization, which is funda-
mentally different from the traditional radical cyclization of un-
saturated substrates involving sequential radical addition and H-
atom abstraction (RA-HAA), provides a new retrosynthetic para-
digm to synthesize five-membered chiral cyclic molecules from
readily available open-chain aldehydes via enantioselective C–C
bond formation through the union of C–H and C=O units.
ASSOCIATED CONTENT
Supporting Information
Experimental details and analytical data for all new compounds.
This material is available free of charge via the Internet at
http://pubs.acs.org.”
AUTHOR INFORMATION
Corresponding Author
(10) For select examples on asymmetric synthesis of α-substituted
pyrrolidine derivatives, see: (a) Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Nat.
Chem. 2017, 9, 140; (b) Cordier, C. J.; Lundgren, R. J.; Fu, G. C. J. Am.
Chem. Soc. 2013, 135, 10946; (c) Campos, K. R.; Klapars, A.; Waldman,
J. H.; Dormer, P. G.; Chen, C.-Y. J. Am. Chem. Soc. 2006, 128, 3538; (d)
Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.;
MacMillan, D. W. C. Science 2016, 352, 1304.
(11) For select examples on C–H insertion with in situ-generated
unstable diazo compounds, see: (a) Reddy, A. R.; Zhou, C. Y.; Guo, Z.;
Wei, J.; Che, C. M. Angew. Chem., Int. Ed. 2014, 53, 14175; (b) Soldi,
ACKNOWLEDGMENT
We are grateful for financial support by NSF (CHE-1624216) and
NIH (R01-GM102554).
REFERENCES
(1) (a) Chatgilialoglu, C.; Studer, A. Encyclopedia of Radicals in
Chemistry, Biology and Materials; John Wiley & Sons: Chichester, U.K.,
2012; (b) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Rad-
ical Reactions: Concepts, Guidelines, and Synthetic Applications; Wiley-
ACS Paragon Plus Environment