ACS Infectious Diseases
Article
(5) Watkins, D., Norris, F. A., Kumar, S., and Arya, D. P. (2013) A
fluorescence-based screen for ribosome binding antibiotics. Anal.
Biochem. 434 (2), 300−307.
molecular scaffold for development of new cell wall targeting
antibiotics.
(6) Dowling, P. M. (2013) Chloramphenicol, thiamphenicol, and
florfenicol. In Antimicrobial therapy in veterinary medicine, pp 269−277,
John Wiley & Sons, Inc., Hoboken, NJ, DOI 10.1002/
(7) Ehrlich, J., Bartz, Q. R., Smith, R. M., Joslyn, D. A., and
Burkholder, P. R. (1947) Chloromycetin, a new antibiotic from a soil
actinomycete. Science 106 (2757), 417.
(8) Schwarz, S., Kehrenberg, C., Doublet, B., and Cloeckaert, A.
(2004) Molecular basis of bacterial resistance to chloramphenicol and
florfenicol. FEMS Microbiol. Rev. 28 (5), 519−542.
(9) Bulkley, D., Innis, C. A., Blaha, G., and Steitz, T. A. (2010)
Revisiting the structures of several antibiotics bound to the bacterial
ribosome. Proc. Natl. Acad. Sci. U. S. A. 107 (40), 17158−17163.
(10) Wilson, D. N. (2014) Ribosome-targeting antibiotics and
mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12 (1), 35−48.
(11) Dunkle, J. A., Xiong, L., Mankin, A. S., and Cate, J. H. (2010)
Structures of the Escherichia coli ribosome with antibiotics bound near
the peptidyl transferase center explain spectra of drug action. Proc.
Natl. Acad. Sci. U. S. A. 107 (40), 17152−17157.
(12) Schlunzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A.,
Albrecht, R., Yonath, A., and Franceschi, F. (2001) Structural basis for
the interaction of antibiotics with the peptidyl transferase centre in
eubacteria. Nature 413 (6858), 814−821.
(13) Murray, I. A., and Shaw, W. V. (1997) O-Acetyltransferases for
chloramphenicol and other natural products. Antimicrob. Agents
Chemother. 41 (1), 1−6.
(14) Shaw, W. V., and Leslie, A. G. (1991) Chloramphenicol
acetyltransferase. Annu. Rev. Biophys. Biophys. Chem. 20, 363−386.
(15) Izard, T., and Ellis, J. (2000) The crystal structures of
chloramphenicol phosphotransferase reveal a novel inactivation
mechanism. EMBO J. 19 (11), 2690−2700.
(16) Turton, J. A., Andrews, C. M., Havard, A. C., and Williams, T. C.
(2002) Studies on the haemotoxicity of chloramphenicol succinate in
the Dunkin Hartley guinea pig. Int. J. Exp. Pathol. 83 (5), 225−238.
(17) Cutler, R. A., Stenger, R. J., and Suter, C. M. (1952) New
antibacterial agents. 2-Acylamino-1-(4-hydrocarbonylsulfonylphenyl)-
1,3-propanediols and related compounds. J. Am. Chem. Soc. 74 (21),
5475−5481.
(18) Suter, C. M., Schalit, S., and Cutler, R. A. (1953) New
antibacterial agents. II. An alternate synthesis of D,L-threo-2-dichloro-
acetamido-1-(4-methylsulfonylphenyl)-1,3-propanediol 1. J. Am. Chem.
Soc. 75 (17), 4330−4333.
(19) Neu, H. C., and Fu, K. P. (1980) In vitro activity of
chloramphenicol and thiamphenicol analogs. Antimicrob. Agents
Chemother. 18 (2), 311−316.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Detailed synthetic procedures, 1H and 13C NMR
assignments for all of the intermediates and final
compounds 1−10, MS data, H and 13C NMR spectra
1
of compounds 1−10 (Figures S1−S20), detailed
biochemical and biological experimental procedures, a
figure with IC50 values (Figure S21), and a figure with
TEM images (Figure S22) (PDF)
AUTHOR INFORMATION
Corresponding Authors
ORCID
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a BSF grant 2012007 (to S.G.-T.
and M.F.), by a National Institutes of Health (NIH) grant
AI090048 (to S.G.-T.), by the Israel Science Foundation Grant
6/14 (to M.F.), by the Israel Ministry of Science Technology &
Space, Grant 48966 (to M.F.), by the Israel Ministry of Science
Technology & Space, Scholarship 3-13550 (to S.L.Z.), and by
startup funds from the College of Pharmacy at the University of
Kentucky (to S.G.-T.). We thank Mr. Raphael I. Benhamou and
Mr. Kfir B. Steinbuch for their help with PI and hemolysis
experiments. We thank Dr. Vered Holdengreber for her
professional assistance in obtaining transmission electron
microscopy images. We thank Prof. Daniel E. Kahne (Harvard
University, USA) for the generous gift of the E. coli NR698
strain used for determination of MIC values.
(20) Syriopoulou, V. P., Harding, A. L., Goldmann, D. A., and Smith,
A. L. (1981) In vitro antibacterial activity of fluorinated analogs of
chloramphenicol and thiamphenicol. Antimicrob. Agents Chemother. 19
(2), 294−297.
ABBREVIATIONS
■
CAM, chloramphenicol; E. coli, Escherichia coli; MIC, minimum
inhibitory concentration; MOM, methoxymethyl; PI, propi-
dium iodide; rRNA, ribosomal ribonucleic acid; SAR,
structure−activity relationship; S. aureus, Staphylococcus aureus;
TAM, thiamphenicol; TEM, transmission electron microscopy;
TBDMS, tert-butyldimethylsilyl
(21) Kehrenberg, C., and Schwarz, S. (2004) fexA, a novel
Staphylococcus lentus gene encoding resistance to florfenicol and
chloramphenicol. Antimicrob. Agents Chemother. 48 (2), 615−618.
(22) Doublet, B., Schwarz, S., Nussbeck, E., Baucheron, S., Martel, J.
L., Chaslus-Dancla, E., and Cloeckaert, A. (2002) Molecular analysis of
chromosomally florfenicol-resistant Escherichia coli isolates from
France and Germany. J. Antimicrob. Chemother. 49 (1), 49−54.
(23) Kono, M., O'hara, K., Honda, M., and Mitsuhashi, S. (1969)
Drug resistance of staphylococci. XI. Induction of chloramphenicol
resistance by its derivatives and analogues. J. Antibiot. 22 (12), 603−
607.
(24) Kono, M., O’Hara, K., Nagawa, M., and Mitsuhashi, S. (1972)
Antibacterial activity of chloramphenicol-related compounds toward a
chloramphenicol-resistant strains of Staphylococcus aureus. Jpn. J.
Microbiol. 16 (6), 461−467.
(25) Berkov-Zrihen, Y., Green, K. D., Labby, K. J., Feldman, M.,
Garneau-Tsodikova, S., and Fridman, M. (2013) Synthesis and
REFERENCES
■
(1) Poehlsgaard, J., and Douthwaite, S. (2005) The bacterial
ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3 (11),
870−881.
(2) Yonath, A. (2005) Antibiotics targeting ribosomes: resistance,
selectivity, synergism and cellular regulation. Annu. Rev. Biochem. 74,
649−679.
(3) Sutcliffe, J. A. (2011) Antibiotics in development targeting
protein synthesis. Ann. N. Y. Acad. Sci. 1241, 122−152.
(4) Tenson, T., and Mankin, A. (2006) Antibiotics and the ribosome.
Mol. Microbiol. 59 (6), 1664−1677.
H
ACS Infect. Dis. XXXX, XXX, XXX−XXX