Facile Preparation of 2-Substituted Benzoxazoles and Benzothiazoles via Aerobic Oxidation
under vacuum to provide the desired heterogeneous catalyst
(PI/CB-Pt, 0.83 g, Pt loading: 0.2090 mmolgÀ1, B loading:
0 mmolgÀ1).
[6] W.-H. Chen, Y. Pang, Tetrahedron Lett. 2009, 50, 6680–
6683.
[7] S. S. Pawar, D. V. Dekhane, M. S. Shingare, S. N. Thore,
Aust. J. Chem. 2008, 61, 905–909.
[8] Y.-X. Chen, L.-F. Qian, W. Zhang, B. Han, Angew.
Chem. 2008, 120, 9470–9473; Angew. Chem. Int. Ed.
2008, 47, 9330–9333.
[9] M. Kidwai, V. Bansal, A. Saxena, S. Aerry, S. Mozum-
dar, Tetrahedron Lett. 2006, 47, 8049–8053.
[10] a) Y. Kawashita, N. Nakamichi, H. Kawabata, M. Hay-
ashi, Org. Lett. 2003, 5, 3713–3715; b) Y. Kawashita, J.
Yanagi, T. Fujii, M. Hayashi, Bull. Chem. Soc. Jpn.
2009, 82, 482–488.
[11] For reviews on polymer-incarcerated metal catalysts,
see: a) R. Akiyama, S. Kobayashi, Chem. Rev. 2009,
109, 594–642; b) S. Kobayashi, H. Miyamura, Chem.
Rec. 2010, 10, 271–290.
[12] a) H. Miyamura, R. Matsubara, Y. Miyazaki, S. Ko-
bayashi, Angew. Chem. 2007, 119, 4229–4232; Angew.
Chem. Int. Ed. 2007, 46, 4151–4154; b) H. Miyamura,
R. Matsubara, S. Kobayashi, Chem. Commun. 2008,
2031–2033; c) C. Lucchesi, T. Inasaki, H. Miyamura, R.
Matsubara, S. Kobayashi, Adv. Synth. Catal. 2008, 350,
1996–2000; d) N. Wang, T. Matsumoto, M. Ueno, H.
Miyamura, S. Kobayashi, Angew. Chem. 2009, 121,
4838–4840; Angew. Chem. Int. Ed. 2009, 48, 4744–4746;
e) K. Kaizuka, H. Miyamura, S. Kobayashi, J. Am.
Chem. Soc. 2010, 132, 15096–15098.
[13] a) H. Miyamura, M. Shiramizu, R. Matsubara, S. Ko-
bayashi, Chem. Lett. 2008, 37, 360–361; b) H. Miya-
mura, M. Shiramizu, R. Matsubara, S. Kobayashi,
Angew. Chem. 2008, 120, 8213–8215; Angew. Chem.
Int. Ed. 2008, 47, 8093–8095; c) H. Miyamura, K. Mae-
hata, S. Kobayashi, Chem. Commun. 2010, 46, 8052–
8054.
General Experiment Procedure for the Aerobic
Oxidation of Phenolic Imines
In a screw-cap glass test tube was charged PI/CB-Pt
(0.0210 g, 0.005 mmol, 1 mol%), phenolic imine 2a (0.0986 g,
0.5 mmol), K2CO3 (0.007 g, 0.05 mmol), and the mixture was
partially dissolved in CHCl3 (1.8 mL) and H2O (0.2 mL).
Then the reaction mixture was allowed to stir for 20 h at
308C under an O2 balloon. After the completion of the reac-
tion, the heterogenous catalyst was removed by filtration
and washed with DCM. To the resulting filtrate, MgSO4
(0.02 g) was added and the dried crude reaction mixture was
filtered again and then concentrated under reduced pres-
sure. The crude product was purified by column chromatog-
raphy (EtOAc:hexane=1:9) to provide 3a as a white solid;
yield: 0.0936 g (0.479 mmol, 96%).
Acknowledgements
This work was partially supported by a Grant-in-Aid for Sci-
entific Research from the Japan Society for the Promotion of
Science (JSPS), Global COE Program, The University of
Tokyo, MEXT (Japan), and NEDO. W.-J.Y. thank JSPS for
the JSPS Postdoctoral Fellowship for Foreign Researchers.
We also thank Mr. Noriaki Kuramitsu (The University of
Tokyo) for STEM analysis.
References
[14] a) H. Miyamura, T. Yasukawa, S. Kobayashi, Green
Chem. 2010, 12, 776–778; b) T. Yasukawa, H. Miya-
mura, S. Kobayashi, Chem. Asian J. 2011, 6, 621–627.
[15] W.-J. Yoo, H. Miyamura, S. Kobayashi, J. Am. Chem.
Soc. 2011, 133, 3095–3103.
[16] The level of boron that exists in the heterogeneous cat-
alyst was determined by inductively coupled plasma
(ICP) analysis of the solution of the acid-digested poly-
mer-supported catalyst. For the effect of boron impuri-
ties on the aerobic oxidation of allylic alcohols, please
see ref.[15]
[17] Although PI-Pt was shown to be an effective catalyst
for the oxidative cyclization phenolic imine 2a, we
chose to utilize PI/CB-Pt as our final catalyst since
higher platinum loadings with small nanocluster sizes
could be achieved with the polymer/carbon black com-
posite material. For examples of the use of polymer/
carbon black support material, please see refs.[12c,12e,15]
[18] F. Fꢁlçp, J. Mattinen, K. Pihlaja, Tetrahedron Lett.
1988, 29, 5427–5428.
[19] At the suggestion of a reviewer, we examined the re-
covered PI/CB-Pt after the 7th reuse cycle by scanning
transmission electron microscopy (STEM). We found
no significant difference in the Pt nanocluster size
before (2.1 nm) and after (1.9 nm) recycling. The
STEM images and particle size distributions of the cat-
alysts can be found in the Supporting Information.
[1] a) A. A. Nagel, D. R. Liston, S. Jung, M. Mahar, L. A.
Vincent, D. Chapin, Y. L. Chen, S. Hubbard, J. L. Ives,
S. B. Jones, J. A. Nielsen, A. Ramirez, I. A. Shalaby, A.
Villalobos, W. F. White, J. Med. Chem. 1995, 38, 1084–
1089; b) M. R. DeLuca, S. M. Kerwin, Tetrahedron
Lett. 1997, 38, 199–202; c) E. Kashiyama, I. Hutchin-
son, M.-S. Chua, S. F. Stinson, L. R. Phillips, G. Kaur,
E. A. Sausville, T. D. Bradshaw, A. D. Westwell,
M. F. G. Stevens, J. Med. Chem. 1991, 42, 4172–4184;
d) C. G. Mortimer, G. Wells, J.-P. Crochard, E. L.
Stone, T. D. Bradshaw, M. F. G. Stevens, A. D. West-
well, J. Med. Chem. 2006, 49, 179–185.
[2] a) R. S. Varma, R. K. Saini, O. Prakash, Tetrahedron
Lett. 1997, 38, 2621–2622; b) J. Chang, K. Zhao, S. Pan,
Tetrahedron Lett. 2002, 43, 951–954; c) C. Praveen,
K. H. Kumar, D. Muralidharan, P. T. Perumal, Tetrahe-
dron 2008, 64, 2369–2374.
[3] a) A. J. Blacker, M. M. Farah, M. I. Hall, S. P. Marsden,
O. Saidi, J. M. J. Williams, Org. Lett. 2009, 11, 2039–
2042; b) A. J. Blacker, M. M. Farah, S. P. Marsden, O.
Saidi, J. M. J. Williams, Tetrahedron Lett. 2009, 50,
6106–6109.
[4] G. Speier, J. Mol. Catal. 1987, 41, 253–260.
[5] K. Cao, Y. Tu, F. Zhang, Sci. China Chem. 2010, 53,
130–134.
Adv. Synth. Catal. 2011, 353, 3085 – 3089
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3089