8 (a) R. G. Balasingham, F. L. T. Greenwood, C. F. Williams, M. P. Coogan
and S. J. A. Pope, Inorg. Chem., 2012, 51, 1419–1426; (b) M. P. Coogan,
V. F. Moreira, J. B. Hess, S. J. A. Pope and C. Williams, New J. Chem.,
2009, 33, 1094–1099.
9 (a) K. K.-W. Lo, K. H.-K. Tsang and N. Zhu, Organometallics, 2006, 25,
3220–3227; (b) M. Obata, A. Kitamura, A. Mori, C. Kameyama,
J. A. Czaplewska, R. Tanaka, I. Kinoshita, T. Kusumoto, H. Hashimoto,
M. Harada, Y. Mikata, T. Funabikig and S. Yano, Dalton Trans., 2008,
3292–3300; (c) H.-Y. Li, J. Wu, X.-H. Zhou, L.-C. Kang, D.-P. Li, Y. Sui,
Y.-H. Zhou, Y.-X. Zheng, J.-L. Zuo and X.-Z. You, Dalton Trans., 2009,
38, 10563–10569; (d) C.-C. Ko, C.-O. Ng, H. Feng and W.-K. Chu,
Dalton Trans., 2010, 39, 6475–6482; (e) L. A. Lytwak, J. M. Stanley,
M. L. Mejía and B. J. Holliday, Dalton Trans., 2010, 39, 7692–7699;
(f) W. Liu and K. Heinze, Dalton Trans., 2010, 39, 9554–9564;
(g) J.-L. Lin, C.-W. Chen, S.-S. Sun and A. J. Lees, Chem. Commun.,
2011, 47, 6030–6032; (h) B. S. Uppal, R. K. Booth, N. Ali,
C. Lockwood, C. R. Rice and P. I. P. Elliott, Dalton Trans., 2011, 40,
7610–7616.
10 A. A. Abdel-Shafi, J. L. Bourdelande and S. S. Ali, Dalton Trans., 2007,
2510–2516.
11 J. A. G. Williams, Top. Curr. Chem., 2007, 281, 205–268.
12 L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura and F. Barigelletti, Top.
Curr. Chem., 2007, 281, 143–203.
13 (a) T. M. McLean, J. L. Moody, M. R. Waterland and S. G. Telfer, Inorg.
Chem., 2012, 51, 446–455; (b) M. Toganoh, T. Ishizukaa and H. Furuta,
Chem. Commun., 2004, 2464–2465.
Scheme 2 Jablonski diagram of TTA upconversion with Re-1 as the
triplet photosensitizer. GS stands for ground state. E is energy. GS is
1
3
ground state (S0). IL* is intraligand singlet excited state. IL* is intra-
ligand triplet excited state. TTET is triplet-triplet energy transfer. 3DPA*
is the triplet excited state of DPA. TTA is triplet–triplet annihilation.
1DPA* is the singlet excited state of DPA. The emission bands observed
for the sensitizers is the 3MLCT/3IL emission. The emission bands
observed in the TTA upconversion experiment is the delayed emission
of DPA.
14 A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino and F. Meinar, Phys.
Rev. B: Condens. Matter Mater. Phys., 2008, 78, 195112.
complexes in photocatalysis, photovoltaics, luminescent molecu-
lar probes and upconversion.
15 T. N. S. Rachford and F. N. Castellano, Coord. Chem. Rev., 2010, 254,
2560–2573.
16 (a) J. Zhao, S. Ji and H. Guo, RSC Adv., 2011, 1, 937–950; (b) S. Ji,
W. Wu, W. Wu, H. Guo and J. Zhao, Angew. Chem., Int. Ed., 2011, 50,
1626–1629; (c) S. Ji, H. Guo, W. Wu, W. Wu and J. Zhao, Angew.
Chem., Int. Ed., 2011, 50, 8283–8286.
Acknowledgements
17 P. Ceroni, Chem.–Eur. J., 2011, 17, 9560–9564.
We thank the NSFC (20972024 and 21073028), Ministry of
Education (NCET-08-0077), the Royal Society (UK) and NSFC
(China-UK Cost-Share Science Networks, 21011130154) for
financial support.
18 Y. Y. Cheng, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee,
N. J. Ekins-Daukes, M. J. Crossley and T. W. Schmidt, Phys. Chem.
Chem. Phys., 2010, 12, 66–71.
19 (a) H. C. Chen, C. Y. Hung, K. H. Wang, H. L. Chen, W. S. Fann,
F. C. Chien, P. Chen, T. J. Chow, C. P. Hsu and S. S. Sun, Chem.
Commun., 2009, 27, 4064–4066; (b) Q. Liu, Y. Sun, T. Yang, W. Feng,
C. Li and F. Li, J. Am. Chem. Soc., 2011, 133, 17122–17125; (c) W. Wu,
H. Guo, W. Wu, S. Ji and J. Zhao, J. Org. Chem., 2011, 76, 7056–7064;
(d) S. Guo, W. Wu, H. Guo and J. Zhao, J. Org. Chem., 2012, 77, 3933–
3943.
References
1 (a) Y. Wang and K. S. Schanze, Inorg. Chem., 1994, 33, 1354–1362;
(b) K. K.-W. Lo, K. H.-K. Tsang, W.-K. Hui and N. Zhu, Chem.
Commun., 2003, 2704–2705; (c) K. K.-W. Lo, K. Y. Zhang and S.
P.-Y. Li, Eur. J. Inorg. Chem., 2011, 3551–3568.
2 E. D. Olmon, M. G. Hill and J. K. Barton, Inorg. Chem., 2011, 50,
12034–12044.
3 (a) N. B. Thornton and K. S. Schanze, New. J. Chem., 1996, 20, 791–
800; (b) A. J. Amoroso, M. P. Coogan, J. E. Dunne, V. Fernández-
Moreira, J. B. Hess, A. J. Hayes, D. Lloyd, C. Millet, S. J. A. Pope and
C. Williams, Chem. Commun., 2007, 3066–3068; (c) V. F. Moreira,
F. L. T. Greenwood and M. P. Coogan, Chem. Commun., 2010, 46, 186–
202; (d) A. J. Hallett, P. Christian, J. E. Jones and S. J. A. Pope, Chem.
Commun., 2009, 4278–4280.
4 A. Vlček Jr., Coord. Chem. Rev., 2000, 200–202, 933–977.
5 (a) M.-W. Louie, T. T.-H. Fong and K. K.-W. Lo, Inorg. Chem., 2011, 50,
9465–9471; (b) G. Gasser, A. Pinto, S. Neumann, A. M. Sosniak,
M. Seitz, K. Merz, R. Heumannc and N. Metzler-Nolte, Dalton Trans.,
2012, 41, 2304–2313; (c) C. Bruckmeier, M. W. Lehenmeier,
R. Reithmeier, B. Rieger, J. Herranz and C. Kavakli, Dalton Trans.,
2012, 41, 5026–5037.
20 J. Sun, W. Wu, H. Guo and J. Zhao, Eur. J. Inorg. Chem., 2011, 3165–
3173.
21 W. Wu, S. Ji, W. Wu, J. Shao, Dr. H. Guo, T. D. James and J. Zhao,
Chem.–Eur. J., 2012, 18, 4953–4964.
22 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,
J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene,
J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas,
J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09
(Revision A.1), Gaussian, Inc., Wallingford, CT, 2009.
23 M. Wrighton and D. L. Morse, J. Am. Chem. Soc., 1974, 96, 998–1003.
24 J. P. Bullock, E. Carter, R. Johnson, A. T. Kennedy, S. E. Key, B. J. Kraft,
D. Saxon and P. Underwood, Inorg. Chem., 2008, 47, 7880–7887.
25 G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem., Int. Ed., 2008, 47,
1184–1201.
26 R. Ziessel and A. Harriman, Chem. Commun., 2011, 47, 611–631.
27 Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic,
Z. Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc and E. U. Akkaya,
Angew. Chem., Int. Ed., 2011, 50, 11937–11941.
6 (a) A. E. Nahhas, C. Consani, A. M. B. Rodríguez, K. M. Lancaster,
O. Braem, A. Cannizzo, M. Towrie, I. P. Clark, S. Záliš, M. Chergui and
A. Vlček Jr., Inorg. Chem., 2011, 50, 2932–2943; (b) F. He, Y. Zhou,
S. Liu, L. Tian, H. Xu, H. Zhang, B. Yang, Q. Dong, W. Tian, Y. Ma and
J. Shen, Chem. Commun., 2008, 3912–3914; (c) M. E. Walther and
O. S. Wenger, Dalton Trans., 2008, 6311–6318; (d) C.-O. Ng, S.-W. Lai,
H. Feng, S.-M. Yiu and C.-C. Ko, Dalton Trans., 2011, 40, 10020–
10028; (e) C.-H. Chen, Y.-H. Liu, S.-M. Peng, J.-T. Chen and S.-T. Liu,
Dalton Trans., 2012, 41, 2747–2754.
28 J. E. Yarnell, J. C. Deaton, C. E. McCusker and F. N. Castellano, Inorg.
Chem., 2011, 50, 7820–7830.
7 K. K.-W. Lo, K. H.-K. Tsang and K.-S. Sze, Inorg. Chem., 2006, 45,
1714–1722.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 8931–8940 | 8939