Job/Unit: O20333
/KAP1
Date: 08-05-12 09:59:34
Pages: 13
Catalyzed Silylcyanation of Aldehydes, Ketones, and Imines
Organic Synthesis, Wiley, Chichester, 2009; DOI: 10.1002/
047084289X.rn00939.
Acknowledgments
[14]
a) Y. Hamashima, D. Sawada, M. Kanai, M. Shibasaki, J. Am.
Chem. Soc. 1999, 121, 2641–2642; b) Y. Hamashima, D. Sa-
wada, H. Nogami, M. Kanai, M. Shibasaki, Tetrahedron 2001,
57, 805–814; c) J. Casas, C. Nájera, J. M. Sansano, J. M. Saá,
Org. Lett. 2002, 4, 2589–2592; d) J. Casas, C. Nájera, J. M.
Sansano, J. M. Saá, Tetrahedron 2004, 60, 10487–10496.
R. J. H. Gregory, Chem. Rev. 1999, 99, 3649–3682.
Prof. Karl Scheidt (Northwestern University) is thanked for helpful
discussions and Drs. Walter A. Baase and Brandon Green (Univer-
sity of Oregon) are acknowledged for technical assistance in ob-
taining ECD spectra from scalemic samples of bis-sulfonamide 3.
Financial support by the National Science Foundation (grant num-
bers CHE-0722319; CHE-0906409, partial support) is gratefully ac-
knowledged. The Murdock Charitable Trust (2005265) is thanked
for support of the OSU NMR spectroscopy facility.
[15]
[16]
For reviews, see: a) J.-M. Brunel, I. P. Holmes, Angew. Chem.
2004, 116, 2810; Angew. Chem. Int. Ed. 2004, 43, 2752–2778;
b) F.-X. Chen, X. Feng, Curr. Org. Synth. 2006, 3, 77–97; c) A.
Baeza, J. M. Sansano, J. M. Saá, C. Nájera, Pure Appl. Chem.
2007, 79, 213–221; d) M. North, Synlett 1993, 807–820.
For selected recent work, see: a) D. H. Ryu, E. J. Corey, J. Am.
Chem. Soc. 2005, 127, 5384–5387; b) S. Lundgren, E.
Wingstrand, C. Moberg, Adv. Synth. Catal. 2007, 349, 364–
372; c) N. H. Khan, S. Agrawal, R. I. Kureshy, S. H. R. Abdi,
K. J. Prathap, R. V. Jasra, Eur. J. Org. Chem. 2008, 4511–4515;
d) J. Takaki, H. Egami, K. Matsumoto, B. Saito, T. Katsuki,
Chem. Lett. 2008, 37, 502–503; e) Y. N. Belokon, W. Clegg,
R. W. Harrington, V. I. Maleev, M. North, M. Omedes Pujol,
D. L. Usanov, C. Young, Chem. Eur. J. 2009, 15, 2148–2165.
a) S.-K. Tian, L. Deng, J. Am. Chem. Soc. 2001, 123, 6195–
6196; b) D. E. Fuerst, E. N. Jacobsen, J. Am. Chem. Soc. 2005,
127, 8964–8965; c) X. Liu, B. Qin, X. Zhou, B. He, X. Feng,
J. Am. Chem. Soc. 2005, 127, 12224–12225; d) Y. Suzuki, M. D.
Abu-Baker, K. Muramatsu, M. Sato, Tetrahedron 2006, 62,
4227–4231; e) T. Kano, K. Sasaki, T. Konishi, H. Mii, K. Ma-
ruoka, Tetrahedron Lett. 2006, 47, 4615–4618; f) R. Chinchilla,
C. Nájera, F. J. Ortega, Tetrahedron: Asymmetry 2008, 19, 265–
268.
[1] G. Chelucci, R. P. Thummel, Chem. Rev. 2002, 102, 3129–3170.
[2] For work highlighting the diversity in heterocyclic biaryls, see:
a) S. K. Dey, D. A. Lightner, J. Org. Chem. 2007, 72, 9395–
9397; b) M. S. Mudadu, R. P. Thummel, J. Org. Chem. 2006,
71, 7611–7617; c) D. Garciá-Cuadrado, A. M. Cuadro, J. Alva-
rez-Builla, U. Sancho, O. Castaño, J. J. Vaquero, Org. Lett.
2006, 8, 5955–5958.
[3] For selected recent examples, see: a) T. Seki, S. Tanaka, M.
Kitamura, Org. Lett. 2012, 14, 608–611; b) A. Bouet, B. Heller,
C. Papamicaël, G. Dupas, S. Oudeyer, F. Marsais, V. Levacher,
Org. Biomol. Chem. 2007, 5, 1397–1404; c) M. P. A. Lyle, N. D.
Draper, P. D. Wilson, Org. Biomol. Chem. 2006, 4, 877–885; d)
P. Aschwanden, C. R. J. Stephenson, E. M. Carreira, Org. Lett.
2006, 8, 2437–2440.
[4] For reviews of 1,1Ј-bi-2-naphthol (BINOL) chemistry and a
general discourse on 1,1Ј-binaphthyls, see: a) J. M. Brunel,
Chem. Rev. 2005, 105, 857–897; b) Y. Chen, S. Yekta, A. K.
Yudin, Chem. Rev. 2003, 103, 3155–3211; c) L. Pu, Chem. Rev.
1998, 98, 2405–2494.
[5] For reviews of 2,2Ј-bis(diphenylphosphanyl)-1,1Ј-binaphthyl
(BINAP), see: a) M. Berthod, G. Mignani, G. Woodward, M.
Lemaire, Chem. Rev. 2005, 105, 1801–1836; b) R. Noyori, H.
Takaya, Acc. Chem. Res. 1990, 23, 345–350.
[6] For selected recent highlights, see: a) Z. Zhang, P. Jain, J. C.
Antilla, Angew. Chem. Int. Ed. 2011, 50, 10961–10964; b) S.
Shirakawa, K. Liu, K. Maruoka, J. Am. Chem. Soc. 2012, 134,
916–919; c) I. Coric, S. Vellalath, B. List, J. Am. Chem. Soc.
2010, 132, 8536–8537; d) G. Hou, W. Li, M. Ma, X. Zhang,
X. Zhang, J. Am. Chem. Soc. 2010, 132, 12844–12846; e) M.
Turlington, Y. Du, S. G. Ostrum, V. Santosh, K. Wren, T. Lin,
M. Sabat, L. Pu, J. Am. Chem. Soc. 2011, 133, 11780–11794;
f) S. Yu, L. Pu, J. Am. Chem. Soc. 2010, 132, 17698–17700.
[7] N. C. Fletcher, J. Chem. Soc., Perkin Trans. 1 2002, 1831–1842.
[8] S. E. Denmark, Y. Fan, M. D. Eastgate, J. Org. Chem. 2005,
70, 5235–5248.
[9] M. Nakajima, M. Saito, M. Shiro, S.-i. Hashimoto, J. Am.
Chem. Soc. 1998, 120, 6419–6420.
[10] C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M.
Brown, A. R. Cowley, D. I. Hulmes, A. J. Blacker, Org. Process
Res. Dev. 2003, 7, 379–384.
[17]
[18]
[19]
[20]
For reviews, see: a) P. Li, H. Yamamoto, Top. Organomet.
Chem. 2011, 37, 161–183; b) M. Kanai, N. Kato, E. Ichikawa,
M. Shibasaki, Synlett 2005, 1491–1508; c) J.-A. Ma, D. Cah-
ard, Angew. Chem. 2004, 116, 4666; Angew. Chem. Int. Ed.
2004, 43, 4566–4583; d) G. J. Rowlands, Tetrahedron 2001, 57,
1865–1882.
For examples based on AlIII or TiIV, see ref.[14] and: a) Y. Ham-
ashima, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2000, 122,
7412–7413; b) J.-M. Brunel, O. Legrand, G. Buono, Tetrahe-
dron: Asymmetry 1999, 10, 1979–1984; c) G. J. Rowlands, Syn-
lett 2003, 236–240; d) B. Zeng, X. Zhou, X. Liu, X. Feng, Tet-
rahedron 2007, 63, 5129–5136.
[21]
[22]
H. Gröger, Chem. Eur. J. 2001, 40, 5246–5251.
For insightful commentary on the role that Lewis base associa-
tion can have on enhancing the Lewis acidity of metal centers
by valence shell expansion, see: S. E. Denmark, G. L. Beutner,
Angew. Chem. 2008, 120, 1584; Angew. Chem. Int. Ed. 2008,
47, 1560–1638.
[14d]
[23]
[24]
See ref.
For discussion on the beneficial effects that trace
additives, including H2O and phosphane oxides, can have on
catalysis, see: a) S. Ribe, P. Wipf, Chem. Commun. 2001, 299–
307; b) M. Vogl, H. Gröger, M. Shibasaki, Angew. Chem. 1999,
111, 1672; Angew. Chem. Int. Ed. 1999, 38, 1570–1577.
A significant variation in yield was found when using molecu-
lar sieves (4 Å) obtained from different manufacturers and also
when zeolites were dried according to slightly different proto-
cols. The loading of molecular sieves (4 Å) also had a dramatic
effect on conversion efficiency.
[11] A. C. Spivey, S. Arseniyadis, T. Fekner, A. Maddaford, D.
Leese, Tetrahedron 2006, 62, 295–301.
[12] a) P. R. Blakemore, C. Kilner, S. D. Milicevic, J. Org. Chem.
2005, 70, 373–376; b) P. R. Blakemore, C. Kilner, S. D. Mil-
icevic, J. Org. Chem. 2006, 71, 8212–8218; c) P. R. Blakemore,
S. D. Milicevic, L. N. Zakharov, J. Org. Chem. 2007, 72, 9368–
9371; d) P. R. Blakemore, S. D. Milicevic, H. Perera, A. Shva-
rev, L. N. Zakharov, Synthesis 2008, 2271–2277; e) C. Wang,
D. M. Flanigan, L. N. Zakharov, P. R. Blakemore, Org. Lett.
2011, 13, 4024–4027; for the synthesis of tetrahydroquinoline
analogues of azaBINOL, see: f) J. Xiao, T.-P. Loh, Org. Lett.
2009, 11, 2876–2879.
[13] The parent member of this group, 7,7Ј-dihydroxy-8,8Ј-biquin-
olyl (azaBINOL, 1) is a diaza-analogue of 1,1Ј-bi-2-naphthol
(BINOL) in which two peri CH units have been formally re-
placed by nitrogen atoms, see: P. R. Blakemore, S. D. Milicevic,
7,7Ј-Dihydroxy-8,8Ј-biquinolyl, in: Encyclopedia of Reagents for
The use of TiIV–sulfonamide complexes for the silylcyanation
of aldehydes has previously been examined, see: J.-S. You, H.-
M. Gau, M. C. K. Choi, Chem. Commun. 2000, 1963–1964.
For selected examples of the silylcyanation of imines, see: a)
N. H. Khan, S. Saravanan, R. I. Kureshy, S. H. R. Abdi, H. C.
Bajaj, Tetrahedron: Asymmetry 2010, 21, 2076–2080; b) A. M.
Seayad, B. Ramalingam, K. Yoshinaga, T. Nagata, C. L. L.
Chai, Org. Lett. 2010, 12, 264–267; c) J. Jarusiewicz, Y. Choe,
K. S. Yoo, C. P. Park, K. W. Jung, J. Org. Chem. 2009, 74,
2873–2876; d) I. V. P. Raj, G. Suryavanshi, A. Sudalai, Tetrahe-
[25]
[26]
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
11