however would be introduction of the carbonyl function-
ality at C31. Access to the alternative carbonyl at C32
would lead to the [5,5,7]-bis-spiroketal, not a completely
unrewarding event, inthataccesstothe latter wouldpermit
construction of novel analogues of the spirastrellolide
skeleton. Exploiting an alkyne to serve as a ketone surro-
gate would also hold promise of an efficient synthetic
sequence by eliminating otherwise required protecting
group manipulations. Construction of the requisite C37
stereogenicity in 7 in turn would entail a chelation-con-
trolled Mukaiyama aldol reaction. Further disconnection
of the C30ꢀC31 σ-bond via an alkyne-epoxide retron
reveals epoxide (ꢀ)-8, alkyne (þ)-9, and aldehyde (ꢀ)-10.
We began with construction of epoxide (ꢀ)-12,2q employ-
ing a two-step sequence from triol (ꢀ)-11, the latter
readily prepared from commercial D-(þ)-ribonic-γ-lactone7
(Scheme 1). Protection of the secondary alcohol as the PMB
ether furnished epoxide (ꢀ)-8, which upon union with the
Scheme 1. Fragment Union of Epoxide (ꢀ)-8 and Alkyne (þ)-9
Figure 1. Structure of spirastrellolide A (1), B (2), D (3), and F
(4). Retrosynthesis of spirastrellolide B northern hemisphere.
Intrigued with the spirastrellolides, we embarked in 2007
on the total synthesis of spirastrellolide B (2) and in
2010 reported the construction of a fully functionalized
C1ꢀC25 southern hemisphere (6).5 We now disclose con-
struction of an advanced C26ꢀC40 northern [5,6,6]-bis-
spiroketal fragment (ꢀ)-5, in conjunction with the [5,5,7]-
bis-spiroketal analogue (ꢀ)-25 (Scheme 3).
anion derived from alkyne 9, the latter prepared by the
method of Baker and Brimble,8 employing BF3•Et2O at low
temperature (ꢀ78 °C), led to (ꢀ)-13. Methylation of the
derived alcohol and removal of the THP protecting group
with PPTS in methanol completed construction of (ꢀ)-14.
The overall yield from (ꢀ)-11 was 28% (six steps).
From the retrosynthetic perspective, we envisioned con-
struction of the requisite [5,6,6]-bis-spiroketal of spiras-
trellolide B (2) to comprise a transition-metal-promoted
spiroketalization reaction (i.e., AuCl),6 involving the
C31ꢀC32-triple bond in 7 (Figure 1). Such a tactic would
require that the alkyne serve as a ketone surrogate. Critical
For the proposed Mukaiyama aldol reaction, a la
Forsyth,2k,l a three-step sequence involving Ley oxidation,9
methyl Grignard addition, and a second Ley oxidation
yielded ketone (ꢀ)-16 (Scheme 2). Kinetic enolization em-
ploying KHMDS at ꢀ78 °C in THF, followed by capture
with TMSCl, then furnished silyl enol ether 18, which in turn
was reacted, in the presence of MgBr2•Et2O, with aldehyde
(ꢀ)-10, prepared in two steps from known epoxide (ꢀ)-17.10
The derived aldol product (ꢀ)-19 was obtained both in
excellent yield and with high selectivity (85% over the two
steps; dr >15:1). The stereochemical outcome was assigned
(3) (a) Paterson, I.; Anderson, E. A.; Dalby, S. M.; Lim, J. H.;
Genovino, J.; Maltas, P.; Moessner, C. Angew. Chem., Int. Ed. 2008,
47, 3016. (b) Paterson, I.; Anderson, E. A.; Dalby, S. M.; Lim, J. H.;
Genovino, J.; Maltas, P.; Moessner, C. Angew. Chem., Int. Ed. 2008, 47,
3021. (c) Paterson, I.; Maltas, P.; Dalby, S. M.; Lim, J. H.; Anderson,
E. A. Angew. Chem., Int. Ed. 2012, 51, 2749. (d) Paterson, I.; Anderson,
E. A.; Dalby, S. M.; Lim, J. H.; Maltas, P.; Loiseleur, O.; Genovino, J.;
Moessner, C. Org. Biomol. Chem. 2012, 10, 5861. (e) Paterson, I.;
Anderson, E. A.; Dalby, S. M.; Lim, J. H.; Maltas, P. Org. Biomol.
Chem. 2012, 10, 5873.
(4) (a) O’Neil, G. W.; Ceccon, J.; Benson, S.; Collin, M.-P.; Fasching,
€
B.; Furstner, A. Angew. Chem., Int. Ed. 2009, 48, 9940. (b) Benson, S.;
Collin, M.-P.; O’Neil, G. W.; Ceccon, J.; Fasching, B.; Fenster, M. D. B.;
(7) Attwood, S. V.; Barrett, A. G. M. J. Chem. Soc., Perkin Trans. 1
1984, 1315.
(8) Baker, R.; Brimble, M. A. Tetrahedron Lett. 1986, 27, 3311.
(9) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis
1994, 639.
(10) Lee, H.; Kim, H.; Baek, S.; Kim, S.; Kim, D. Tetrahedron Lett.
2003, 44, 6609.
(11) Fujisawa, H.; Sasaki, Y.; Mukaiyama, T. Chem. Lett. 2001, 190.
€
Godbout, C.; Radkowski, K.; Goddard, R.; Furstner, A. Angew. Chem.,
Int. Ed. 2009, 48, 9946. (c) Benson, S.; Collin, M.-P.; Arlt, A.; Gabor, B.;
Goddard, R.; Furstner, A. Angew. Chem., Int. Ed. 2011, 50, 8739.
€
(5) (a) Smith, A. B., III; Kim, D.-S. Org. Lett. 2007, 9, 3311. (b)
Smith, A. B., III; Smits, H.; Kim, D.-S. Tetrahedron 2010, 66, 6597.
(6) (a) Utimoto, K. Pure Appl. Chem. 1983, 55, 1845. (b) Liu, B.; De
Brabander, J. K. Org. Lett. 2006, 8, 4907. (c) Aponick, A.; Li, C.-Y.;
Palmes, J. A. Org. Lett. 2009, 11, 121.
Org. Lett., Vol. 14, No. 15, 2012
3999