4550
G. Lopez et al. / Tetrahedron Letters 53 (2012) 4548–4550
MeO
OH
OMe
MeO
MeO
MeO
MeO
H+
1'
H2O
- H+
6'-1'-closure
1'
1'
1'
6'
6'
6'
6'
OH
H
H
- H2O
MeO
HO
OMe
OMe
OMe
OMe
α-terpenyl cation
trans-conitriol
OMe
Scheme 2. Postulated mechanism accounting for the formation of trans-conitriol 13.
313.1780 (Calcd), 313.1774 (Found). Data for major product trans-11 1H NMR
(DMSO-d6, 400 MHz) d (ppm): 6.96 (s, 1H, H-3), 6.77 (m, 2H, H-5 H-6); 5.37 (s,
In conclusion, we have described an efficient route for the syn-
thesis of the meroterpenes trans-methoxyconidiol 14 and trans-
conitriol 13 previously isolated from Ascidian species as their cis
form. It should be noted that, to the best of our knowledge, the syn-
thesis of conitriol is described for the first time in this article. With
the synthetic method presented here compounds 13 and 14 were
obtained in high yields in less than 12 h, at room temperature,
without any side products and with a high diastereoselectivity.
1H, H-20); 4.64 (s, 1H, 70-OH); 3.82 (s, 6H, 1-OMe 4-OMe); 3.23 (d, 1H, H-10,
3
J1 ,6 = 1.25 Hz); 2.31 (d, 1H, H-60); 2.12–1.51 (m, 4H, H-40 H-50); 1.82 (s, 3H, H-
100); 1.24 (s, 6H, H-80 H-90). 13C NMR (DMSO-d6, 100 MHz) d (ppm): 152.7 (C-
4), 148.5 (C-1), 135.3 (C-30), 126.4 (C-2), 123.9 (C-20), 116.0 (C-3), 112.0 (C-5 C-
6), 70.6 (C-70), 55.9 (1-OMe 4-OMe), 45.6 (C-60), 31.5 (C-40), 28.0 (C-80 C-90),
26.4 (C-10), 24.9 (C-50), 22.3 (C-100). HRMS ESI+: (C18H26O3+Na)+: 313.1780
(Calcd), 313.1777 (Found). Data for major product trans-12 1H NMR (DMSO-d6,
400 MHz) d (ppm): 6.95 (s, 1H, H-3); 6.75 (m, 2H, H-5 H-6); 5.80 (s, 1H, H-20);
0
0
3.83 (s, 6H, 1-OMe 4-OMe); 3.31 (s, 3H, 70-OMe); 3.21 (d, 1H, H-10,
3
J1 ,6 = 1.43 Hz); 2.33 (d, 1H, H-60); 2.10–1.52 (m, 4H, H-40 H-50); 1.80 (s, 3H,
H-100); 1.23 (s, 6H, H-80 H-90). 13C NMR (DMSO-d6, 100 MHz) d (ppm): 152.6
(C-4), 148.6 (C-1), 134.8 (C-30), 132.1 (C-2), 124.4 (C-20), 118.5 (C-3), 111.0 (C-5
C-6), 77.1 (C-70), 55.6 (1-OMe 4-OMe), 45.1 (70-OMe), 36.1 (C-60), 31.1 (C-40),
23.7 (C-80 C-90), 23.0 (C-10 C-50), 22.9 (C-100). HRMS ESI+: (C19H28O3+Na)+:
327.1936 (Calcd), 327.1943 (Found).
0
0
Acknowledgments
G.L. would like to thank Dr. Nabyl Merbouh and Mrs. Liu-Lopez
Fang for their useful comments on the manuscript. This work is
part of the ECIMAR (ANR-06-BDIV-001-04) project granted by the
Agence Nationale de la Recherche (ANR).
15. Luly, J. R.; Rapoport, H. J. Org. Chem. 1981, 46, 2745–2752.
16. Data for major product trans-13 1H NMR (CDCl3, 400 MHz) d (ppm): 8.65 (s, 1H,
1-OH); 8.53 (s, 1H, 4-OH); 6.55–6.50 (m, 3H, H-3 H-5 H-6); 5.35 (s, 1H, H-20);
3
4.50 (s, 1H, 70-OH); 3.90 (d, 1H, H-10, J1 ,6 = 1 Hz); 2.10 (s, 1H, H-40); 2.02 (d,
1H, H-60); 1.82 (s, 3H, H-100); 1.65 (s, 1H, H-50); 1.24 (s, 3H, H-80); 0.98 (s, 3H,
H-90). 13C NMR (CDCl3, 100 MHz) d (ppm): 149.1 (C-4), 148.1 (C-1), 134.2 (C-
30), 128.1 (C-2), 124.1 (C-20), 118.3 (C-3), 116.0 (C-5 C-6), 73.5 (C-70), 46.2 (C-
60), 33.1 (C-10), 30.5 (C-40), 29.3(C-80); 23.2 (C-90); 22.5 (C-100), 20.6 (C-50).
HRMS ESI+: (C16H22O3+Na)+: 285.1467 (Calcd), 285.1475 (Found). Data for
minor product cis-6: see Ref. 9.
0
0
References and notes
1. Cornforth, J. W. Chem. Br. 1968, 4, 102–106.
2. Jung, M.; Jang, K. H.; Kim, B.; Lee, B. H.; Wook, B.; Oh, K.-B.; Shin, J. J. Nat. Prod.
2008, 71, 1714–1719.
3. Cueto, M.; MacMillan, J. B.; Jensen, P. R.; Fenical, W. Phytochemistry 2006, 67,
1826–1831.
4. Zhang, W.; Khalil, Z. G.; Capon, R. J. Tetrahedron 1985, 67, 2591–2595.
5. Appleton, D. R.; Chuen, C. S.; Berridge, M. V.; Webb, V. L.; Copp, B. R. J. Org.
Chem. 2009, 74, 9195–9198.
6. Sheu, J. H.; Su, J. H.; Sung, P. J.; Wang, G. H.; Dai, C. F. J. Nat. Prod. 2004, 67,
2048–2052.
7. Benslimane, A. F.; Pouchus, Y. F.; Le Boterff, J.; Verbist, J. F.; Roussakis, C.;
Monniot, F. J. Nat. Prod. 1988, 51, 582–583.
8. Simon-Levert, A.; Arrault, A.; Bontemps-Subielos, N.; Canal, C.; Banaigs, B. J.
Nat. Prod. 2005, 68, 1412–1415.
9. Garrido, L.; Zubia, E.; Ortega, M. J.; Salvà, J. J. Nat. Prod. 2002, 6, 1328–1331.
10. Simon-Levert, A.; Azeb, A.; Bontemps-Subielos, N.; Banaigs, B.; Genevière, A. M.
Chem. Biol. Interact. 2007, 168, 106–116.
11. Simon-Levert, A.; Menniti, C.; Soulère, L.; Genevière, A. M.; Barthomeuf, C.;
Banaigs, B.; Witczak, A. Marine Drugs 2010, 8, 347–358.
12. Carreno, M. C.; Ruano, J. L. G.; Toledo, M. A.; Urbano, A. Tetrahedron: Asymmetry
1997, 8, 913–921.
13. Li, S.; Chiu, P. Tetrahedron Lett. 2008, 49, 1741–1744.
14. All new compounds were fully characterized on the basis of 1H NMR, 13C NMR,
and mass spectroscopic data. Data for major product (E)-10 1H NMR (CDCl3,
400 MHz) d (ppm): 7.03 (s, 1H, H-3); 6,81 (m, 2H, H-5 H-6); 5.80 (d,1H, H-20);
5.20 (m, 2H, H-10 H-60); 3.83 (s, 6H, 1-OMe 4-OMe); 2.00 (m, 3H, H-40 H-50 10-
OH); 1.83–1.80 (m, 9H, 80-CH3 80-CH3 90-CH3). 13C NMR (CDCl3, 100 MHz) d
(ppm): 153.9 (C-4), 151.3 (C-1), 137.0 (C-30), 130.8 (C-70), 127.1 (C-2), 125.0 (C-
60), 121.5 (C-20), 112.0 (C-3 C-5 C-6), 72,6 (C-10), 55,0 (1-OMe 4-OMe), 42,6 (C-
40), 24,6 (C-50), 22,6 (C-80 C-90), 16,4 (C-100). HRMS ESI+: (C18H26O3+Na)+:
17. Data for major product trans-14 1H NMR (CDCl3, 400 MHz) d (ppm): 8.55 (s, 1H,
1-OH); 8.46 (s, 1H, 4-OH); 6.58–6.52 (m, 3H, H-3 H-5 H-6); 5.90 (s, 1H, H-20);
3
3.76 (d, 1H, H-10, J1 ,6 = 1.11 Hz); 3.13 (s, 3H, 70-OMe); 2.12 (s, 1H, H-40); 2.10
(d, 1H, H-60); 1.69 (s, 3H, H-100); 1.63 (s, 1H, H-50); 0.89 (s, 3H, H-80); 0.78 (s,
3H, H-90). 13C NMR (CDCl3, 100 MHz) d (ppm): 152.1 (C-4), 147.9 (C-1), 131.2
(C-30), 128.1 (C-2), 125.2 (C-20), 119.3 (C-3), 115.0 (C-5 C-6), 77.5 (C-70), 48.0
(70-OMe), 45.2 (C-60), 33.1 (C-10), 30.5 (C-40), 22.0 (C-80 C-100), 20.9 (C-50), 19.5
(C-90). HRMS ESI+: (C17H24O3+Na)+: 299.1623 (Calcd), 299.1629 (Found). Data
for minor product cis-3: see Ref. 8.
0
0
18. For the first and the second steps of the synthesis, see Ref. 11. Typical procedure
for the third step: to a stirred solution of 1-[2,5-bis(methoxymethyloxy)phenyl]-
3,7-dimethyl-2,6-octadien-1-ol (0.1 g, 0.28 mmol) in THF/H2O (2:1, 10 mL) was
added dropwise 12 N hydrochloric acid (1.6 mL). The mixture was stirred at 8 °C
for 18 h then concentrated in vacuo. The crude was diluted with CH2Cl2 (10 mL),
washed with water (2 ꢁ 10 mL), dried (Na2SO4), and concentrated. The residue
was purified by silica gel chromatography (heptane/ethyl acetate, 7:3) to give
conitriol as a colorless oil (15 mg, 20%).
19. The energy-minimized structures were computed using the following
software: Avogadro: an open-source molecular builder and visualization tool.
20. The dihedral angles values were determined in silico using the Avogadro
software. The estimated 3J values were obtained from the dihedral angles
values using the following software: Sweet J: a desktop calculator for the
21. Taura, F.; Morimoto, S.; Shoyama, Y. J. Am. Chem. Soc. 1995, 117, 9766–9767.