5106
J. Prabhakaran et al. / Bioorg. Med. Chem. Lett. 22 (2012) 5104–5107
13. Fournier, N. M.; Duman, R. S. Behav. Brain Res. 2012, 227, 440.
14. Kodama, M.; Fujioka, T.; Duman, R. Biol. Psychiatry 2008, 56, 570.
15. Couillard, -D. S.; Wuertinger, C.; Kandasamy, M.; Caioni, M.; Stadler, K.; Aigner,
R.; Bogdahn, U.; Aigner, L. Mol. Psychiatry 2009, 14, 856.
NS2
NS1
T
16. Ian, Z. Neurosignals 2005, 14, 207.
17. Cao, L.; Jiao, X.; Zuzga, D. S.; Liu, Y.; Fong, D. M.; Young, D.; During, M. J. Nat.
Genet. 2004, 36, 827.
18. Roskoski, S., Jr. Biochem. Biophys. Res. Commun. 2008, 375, 287.
19. Wahl, O.; Oswald, M.; Tretzel, L.; Herres, E.; Arend, J.; Efferth, T. Curr. Med.
Chem. 2011, 18, 3136.
20. Furuya, M.; Nagahama, K.; Ishizu, A.; Otsuka, N.; Nagashima, Y.; Aoki, I. Front.
Biosci. 2011, E3, 549.
21. Ho, T. Q.; Kuo, C. J. Int. J. Biochem. Cell Biol. 2007, 39, 1349.
22. Rehman, S. Oncologist 2005, 10, 92.
23. Keunen, O.; Johansson, M.; Oudin, A.; Sanzey, M.; Abdul Rahim, S. A.; Fack, F.;
Thorsen, F.; Taxt, T.; Bartos, M.; Jirik, R.; Miletic, H.; Wang, J.; Stieber, D.; Stuhr,
L.; Moen, I.; Rygh, C. B.; Bjerkvig, R.; Niclou, S. P. PNAS 2011, 108, 3749.
24. Weis, S. M.; Cheresh, D. A. Nat. Med. 2011, 17, 1359.
25. Schroeder, C. P.; Hospers, G. A. P.; Willemse, P. H. B.; Perik, P. J.; de Vries, E. F. J.;
Jager, P. L.; van der Graaf, W. T. A.; Lub-de Hooge, M. N.; de Vries, E. G. E. Cancer
Metastasis Biol. Treat. 2007, 11, 307.
26. Cai, W.; Chen, X. J. Nucl. Med. 2008, 49, 113S.
27. Hicks, J. W.; VanBrocklin, H. F.; Wilson, A. A.; Houle, S.; Vasdev, N. S. Molecules
2010, 15, 8260.
28. Collingridge, D. R.; Carroll, V. A.; Glaser, M.; Aboagye, E. O.; Osman, S.;
Hutchinson, O. C.; Barthel, H.; Luthra, S. K.; Brady, F.; Bicknell, R.; Price, P.;
Harris, A. L. Cancer Res. 2002, 62, 5912.
29. Nagengast, W. B.; de Vries, E. G.; Hospers, G. A.; Mulder, N. H.; de Jong, J. R.;
Hollema, H.; Brouwers, A. H.; van Dongen, G. A.; Perk, L. R.; Lub-de Hooge, M. N.
J. Nucl. Med. 2007, 48, 1313.
Figure 1. Phosphor image of [18F]1 in glioma sections. T: total binding; NS1:
nonspecific binding defined by blockade with ZM-323881; NS2: nonspecific defined
by blockade with (R)-PAQ.
30. Backer, M. V.; Levashova, Z.; Patel, V.; Jehning, B. T.; Claffey, K.; Blankenberg, F.
G.; Backer, J. M. Nat. Med. 2007, 13, 504.
phosphor image study in quadruplicate. Slide-mounted sections
were incubated in Tris buffer (pH 7.4) containing 0.18 nM of
[
31. Rodriguez-Porcel, M.; Cai, W.; Gheysens, O.; Willmann, J. K.; Chen, K.; Wang,
H.; Chen, I. Y.; He, L.; Wu, J. C.; Li, Z. B.; Mohamedali, K. A.; Kim, S.; Rosenblum,
M. G.; Chen, X.; Gambhir, S. S. J. Nucl. Med. 2008, 49, 667.
32. Willmann, J. K.; Chen, K.; Wang, H.; Paulmurugan, R.; Rollins, M.; Cai, W.;
Wang, D. S.; Chen, I. Y.; Gheysens, O.; Rodriguez, P. M.; Chen, X.; Gambhir, S. S.
Circulation 2008, 117, 915.
33. Wang, H.; Cai, W.; Chen, K.; Li, Z. B.; Kashefi, A.; He, L.; Chen, X. Eur. J. Nucl. Med.
Mol. Imaging 2007, 34, 2001.
34. Wang, J.-Q.; Miller, K. D.; Sledge, G. W.; Zheng, Q.-H. Bioorg. Med. Chem. Lett.
2005, 15, 4380.
35. Gao, M.; Lola, C. M.; Wang, M.; Miller, K. D.; Sledge, G. W.; Zheng, Q.-H. Bioorg.
Med. Chem. Lett. 2011, 21, 3222.
36. Samén, E.; Thorell, J.-O.; Lu, L.; Tegnebratt, T.; Holmgren, L.; Stone-Elander, S.
Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1283.
37. Commander, H.; Whiteside, G.; Perry, C. Drugs 2011, 71, 1355.
38. Langmuir, P. B.; Yver, A. Clin. Pharmacol. Ther. 2012, 91, 71.
39. Hennequin, L. F.; Stokes, E. S.; Thomas, A. P.; Johnstone, C.; Plé, P. A.; Ogilvie, D.
J.; Wedge, S. R.; Kendrew, J.; Curwen, J. O. J. Med. Chem. 2002, 45, 1300.
40. Radiosynthesis of [18F]1: To an aqueous [18F]fluoride solution were added a
solution containing kryptofixÒ2.2.2. (11 mg, 0.03 mmol), potassium carbonate
(2 mg, 0.014 mmol) in 0.2 mL of 95:5 acetonitrile/water. The mixture was dried
18F]1 for 60 min at room temperature. Adjacent sections were
incubated with ZM-323881 or (R)-PAQ, the two known selective
VEGFR2 antagonists (1 M) to determine nonspecific binding. After
l
the incubation, sections were washed with ice-cold buffer and
slides were quickly dried under a stream of cold air and exposed
to a phosphor-imaging screen with high- and low-activity stan-
dards for 60 min. Screens are scanned with a Packard Cyclone
phosphor-imaging system and analyzed with OptiQuant Acquisi-
tion and Analysis software (Packard). Displacement of total binding
was observed with both VEGFR2 ligands as evident from Figure 1.
In summary, we successfully synthesized [18F]1, a potential
imaging agent for VEGFR2. The total time required for the radio-
synthesis was 75 min from EOS using [18F]FE-OTs in DMSO.
[
18F]1 was obtained in 20 5% yield (EOS) with excellent radio-
chemical purities and specific activity. Phosphor image studies
indicate that this newly developed [18F]1 ligand binds to VEGFR2
in surgically removed human glioma. The results obtained indicate
the feasibility of using [18F]1 as a potential imaging agent to visu-
alize VEGFR2 in brain using PET.
in
a stream of argon at 95 °C for 10 min, followed by azeotrope with
acetonitrile (3 Â 0.5 mL) for three times. To the dried kryptofixÒ2.2.2./[18F]
fluoride complex, 4 mg ethyleneglycol-1,2-ditosylate in 1 mL acetonitrile was
added and heated in a sealed vial for 10 min. At the end of the reaction, the
crude product was diluted with 10 mL DI water and passed through an
activated C-18 Sep-PakÒ. The C-18 Sep-PakÒ cartridge was further washed with
4 mL hexane and dried under argon. The Sep-PakÒ was then eluted with 2 mL
ether to obtain [18F]FEOTs in 70%. The ether solution was dried under argon,
added with 4 mg of freshly prepared sodium salt of (R)-2 in 0.25 mL DMSO and
heated for 20 min at 90 °C (The sodium salt was prepared by dissolving 4 mg of
Acknowledgments
This work was partially supported by Clinical and Translational
Science (CTSA) award, Columbia University Medical Center (to J.P.).
compound 2, dissolved in 0.5 mL of acetonitrile followed by addition of 2–4 lL
of 5 M NaOH solution. The mixture was vortexed and the solvent was removed
azeotropically at 90 °C under a stream of argon. The sodium salt thus obtained
was dissolved in 0.25 mL of DMSO for further reaction). The crude product was
diluted with 0.25 mL of acetonitrile and was directly injected into a semi
preparative RP-HPLC (Phenomenex C18, 10 Â 250 mm, 10) and eluted with
acetonitrile: 0.1 M ammonium formate solution (35:65) at a flow rate of
10 mL/min. The precursor eluted after 6–7 min during the HPLC analysis. The
References and notes
1. Waldner, M. J.; Neurath, M. F. Expert Opin. Ther. Targets 2012, 16, 5.
2. Vitale, G.; Dicitore, A.; Gentilini, D.; Cavagnini, F. Cancer Biol. Ther. 2010, 9, 694.
3. Dowlati, A. J. Clin. Oncol. 2010, 28, 185.
4. Ellis, L. M.; Hicklin, D. J. Nat. Rev. Cancer 2008, 8, 579.
5. Smith, N. R.; Baker, D.; James, N. H.; Ratcliffe, K.; Jenkins, M.; Ashton, S. E.;
Sproat, G.; Swann, R.; Gray, N.; Ryan, A.; Jürgensmeier, J. M.; Womack, C. Clin.
Cancer Res. 2009, 15, 4138.
6. Ferrara, N.; Darren, D. W.; Roy, H. S.; James, A. L. Antiangiogenic Cancer Ther.
2008, 23.
7. Rosenstein, J. M.; Kruin, J. M.; Ruhrberg, C. VEGF in the Nervous System. In VEGF
in Development; Ruhrberg, C., Ed.; Landes Bioscience and Springer Science,
2008; pp 91–103.
product fraction with a retention time of 10–11 min based on c-detector was
collected, diluted with 50 mL of deionized water, and passed through a C-18
Sep-PakÒ cartridge. Reconstitution of the product in 1 mL of absolute ethanol
afforded [18F]1 (20 5% yield, based on [18F]FÀ at EOS). A portion of the ethanol
solution was analyzed by analytical RP-HPLC (Phenomenex, Prodigy ODS(3)
4.6 Â 250 mm, 5 m; mobile phase: acetonitrile/0.1 M ammonium formate;
40:60, flow rate: 2 mL/min, retention time: 7 min, wavelength: 254 nm) to
determine the specific activity and radiochemical purity. The ethanol solution
of [18F]1 was used for further studies.
8. Almodovar, C. R.; Lambrechts, D.; Mazzone, M.; Carmeliet, P. Physiol. Rev. 2009,
89, 607.
41. Bauman, A.; Piel, M.; Schirrmacher, R.; Rosch, F. Tetrahedron Lett. 2003, 44,
9165; Block, D.; Coenen, H. H.; Stocklin, G. J. Labelled Compd. Radiopharm. 1987,
25, 201.
´
9. Góra, K. K.; Josko, J. T. Folia Neuropathol. 2005, 43, 31.
42. In vitro phosphor image with
performed using pathologically identified surgically removed glioma tissues.
The frozen glioma tissues were sectioned (20 m) were collected onto glass
[
18F]1: The in vitro experiments will be
10. Abbott, J. N.; Rönnbäck, L.; Hansson, E. Nat. Rev. Neurosci. 2006, 7, 41.
11. Jin, K. L.; Mao, X. O.; Greenberg, D. A. PNAS 2000, 97, 10242.
12. Yun, H.; Lee, M.; Kim, S. S.; Ha, J. J. Biol. Chem. 2005, 280, 9963.
l