Journal of Medicinal Chemistry
Article
crystalline solid. Rf = 0.68 (1:2 cyclohexane−EtOAc). 1H NMR
(CDCl3), δH: 7.41−7.37 (5 H, m, Ar−H), 4.92 (2 H, s, PhCH2), 4.87
(2 H, d, JH‑4,HO‑4 = 5.6 Hz, CH2-4), 4.73 (2 H, d, JH‑5,HO‑5 = 6.4 Hz,
CH2-5), 3.73 (2 H, br, α4-OH, α5-OH, exchangeable with D2O), 2.50
(3 H, s, CH3-2) ppm. 13C NMR (CDCl3), δC: 155.56 (s, Py-C),
152.03 (s, Py-C), 142.98 (s, Py-C), 136.22 (s, Py-C), 129.04−128.69
(m, Ph-C), 117.97 (s, Py-C), 76.93 (s, PhCH2-O3), 67.03 (s, CH2-4),
57.44 (s, CH2-5), 19.83 (s, CH3-2) ppm. Anal. Calcd for C15H16NO3I
(%): C, 46.77; H, 4.19; N, 3.64. Found: C, 46.74; H, 4.17; N, 3.62.
3-O-Benzyl-α4,α5-di-O-allyl-6-iodopyridoxine 12. To a well
stirred dry DMF (80 mL) solution of 11 (1.20 g, 3.1 mmol) and NaH
(0.50 g, 12.5 mmol, 60% dispersion in mineral oil) was added allyl
bromide (1.13 g, 9.33 mmol) in dry DMF (10 mL) dropwise over a
period of 1−2 h, and the stirring continued for an additional 4−5 h. At
the end of the time, TLC (4:1 cyclohexane−EtOAc) showed the
reaction to be complete. Then MeOH (15 mL) was added slowly to
react with the excess of the NaH. After most DMF was removed under
reduced pressure at 55 °C, the residue was dissolved in CH2Cl2 (150
mL) and washed with water, dried (Na2SO4), filtered, and evaporated.
The residue was purified by column chromatography on silica gel with
4:1 cyclohexane−EtOAc as the eluent to afford quantitatively 12 (1.45
g) as a syrup. Rf = 0.58 (4:1 cyclohexane−EtOAc). 1H NMR (CDCl3),
eluent to afford 14 (0.38 g, 86%) as a syrup. Rf = 0.35 (1:4
cyclohexane−EtOAc). 1H NMR (CDCl3), δH: 7.42−7.36 (5 H, m, Ar-
H), 4.93 (2 H, s, PhCH2), 4.86 (2 H, s, CH2-4), 4.62 (2 H, s, CH2-5),
3.74−3.60 (8 H, m, α4-OCH2CH2CH2OH, α5-OCH2CH2CH2OH),
2.55 (3 H, s, CH3-2), 2.92 (2H, br, α4-O(CH2)3OH, α5-
O(CH2)3OH), 1.86−1.76 (4 H, m, α4-OCH2CH2CH2OH, α5-
OCH2CH2CH2OH) ppm. 13C NMR (CDCl3), δC: 135.70 (s, Py-
C2′), 130.81 (s, Py-C3′), 153.36 (s, Py-C4′), 136.34 (q, 3JF−C = 8.3 Hz,
Py-C5′), 141.59 (q, 2JF−C = 32.0 Hz, Py-C6′), 122.22 (q, 1JF−C = 273.9
Hz, CF3), 129.00−127.84 (m, Ph-C), 76.85 (s, PhCH2-O3), 72.66 (s,
CH2 -4), 69.57, 69.56 (2s, α4 -OCH2 (CH2 )2 OH, α5 -
OCH2(CH2)2OH), 63.72 (s, CH2-5), 60.79, 60.63 (2s, α4-O-
(CH2)2CH2OH, α5-O(CH2)2CH2OH), 32.36, 32.27 (2s, α4-
OCH2CH2CH2OH, α5-OCH2CH2CH2OH), 19.78 (s, CH3-2) ppm.
Anal. Calcd for C22H28NO5F3 (%): C, 59.59; H, 6.36; N, 3.16. Found:
C, 59.56; H, 6.34; N, 3.14.
3-O-Benzyl-α4,α5-di-O-[3′-O-(2,3,4,6-tetra-O-acetyl-β-D-
glucopyranosyl)propyl]-6-trifluoromethylpyridoxine 15. A sol-
ution of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (0.75 g,
1.45 mmol, 1.2 equiv) in anhydrous CH2Cl2 (5 mL) was added
dropwise into a solution of 14 (0.34 g, 0.75 mmol) and Hg(CN)2
(0.52 g, 1.21 mmol) as a promoter in dry acetonitrile (10 mL)
containing powdered molecular sieves (4 Å, 1.3 g) with vigorous
stirring at room temperature under an argon atmosphere in the dark
for 12 h. The mixture was diluted with CH2Cl2 (60 mL), filtered
through Celite, washed with water, dried (Na2SO4), and concentrated
in vacuo. The residue was purified on a silica gel column (1:1
cyclohexane−EtOAc) to yield the title compound 15 (0.73 g, 88%) as
δH: 7.43−7.36 (5 H, m, Ar-H), 5.98 (1 H, dq, 3J1′,2′ = 1.8 Hz, 3J2′,3a′
20.0 Hz, 3J2′,3b′ = 9.0 Hz, H-2′), 5.91 (1 H, dq, 3J1″,2″ = 1.8 Hz, 3J2″,3a″
22.4 Hz, 3J2″,3b″ = 9.0 Hz, H-2″), 5.35 (1 H, dt, 4J1′,3′ = 1.0 Hz, 2J3a′,3b′
=
=
=
4
2
2.4 Hz, H-3′), 5.26 (1 H, dt, J1′,3′ = 1.0 Hz, J3a″,3b″ = 2.4 Hz, H-3″),
4.89 (2 H, s, PhCH2), 4.67 (2 H, s, CH2-4), 4.60 (2 H, s, CH2-5), 4.11
(2 H, dt, H-1′), 4.02 (2 H, dt, H-1″), 2.49 (3 H, s, CH3-2) ppm. 13C
NMR (CDCl3), δC: 155.27 (s, Py-C), 152.84 (s, Py-C), 140.40 (s, Py-
C), 136.65 (s, Py-C), 134.63 (s, α4-OCH2CHCH2), 134.26 (s, α5-
OCH2CHCH2), 128.89−128.14 (m, Ph-C), 119.45 (s, Py-C),
118.25 (s, α4-OCH2CHCH2), 118.03 (s, α5-OCH2CHCH2),
76.97 (s, PhCH2-O3), 72.46 (s, α4-OCH2CHCH2), 72.29 (s, α5-
OCH2CHCH2), 71.96 (s, CH2-4), 63.29 (s, CH2-5), 19.76 (s, CH3-
2) ppm. Anal. Calcd for C21H24NO3I (%): C, 54.20; H, 5.20; N, 3.01.
Found: C, 54.16; H, 5.18; N, 3.00.
1
a syrup. Rf = 0.50 (1:1 cyclohexane−EtOAc). H NMR (CDCl3), δH:
7.45−7.39 (5 H, m, Ar-H), 4.94 (2 H, s, PhCH2), 4.68 (2 H, s, CH2-
4), 4.64 (2 H, s, CH2-5), 4.15−4.09 (4 H, m, α4-OCH2(CH2)2O-, α5-
OCH2(CH2)2O-), 3.62−3.54 (4 H, m, α4-O(CH2)2CH2O-, α5-
O(CH2)2CH2O-), 2.57 (3 H, s, CH3-2), 1.94−1.84 (4 H, m, α4-
OCH2CH2CH2O-, α5-OCH2CH2CH2O-), 4.48 (1 H, d, J1′,2′ = 8.0 Hz,
H-1′), 4.41 (1 H, d, J1″,2″ = 7.6 Hz, H-1″), 5.00 (1 H, dd, J2′,3′ = 10.0
Hz, H-2′), 4.96 (1 H, dd, J2″,3″ = 9.8 Hz, H-2″), 5.20 (1 H, dd, J3′,4′
=
3-O-Benzyl-α4,α5-di-O-allyl-6-trifluoromethylpyridoxine 13.
Trifluoromethylation of 12 (1.10 g, 2.4 mmol) with Me3SiCF3 (537
μL, 2.9 mmol, 1.2 equiv) in the presence of CuI (456 mg, 2.4 mmol,
1.0 equiv) and KF (168 mg, 2.9 mmol, 1.2 equiv) in DMF−NMP (10
mL, 1:1 v/v′) under an argon atmosphere in the dark, according to the
procedures described for the preparation of 4 and 7, yielded 13 (0.90
3.2 Hz, H-3′), 5.17 (1 H, dd, J3″,4″ = 3.6 Hz, H-3″), 5.10 (1 H, dd, J4′,5′
= 5.6 Hz, H-4′), 5.04 (1 H, dd, J4″,5″ = 5.4 Hz, H-4″), 3.70 (1 H, m, H-
5′), 3.68 (1 H, m, H-5″), 4.26 (1 H, dd, J5′,6a′ = 4.8 Hz, J6a′,6b′ = 13.6
Hz, H-6a′), 4.23 (1 H, dd, J5″,6a″ = 4.4 Hz, J6a″,6b″ = 12.4 Hz, H-6a″),
3.93 (1 H, dd, J5′,6b′ = 5.6 Hz, H-6b′), 3.90 (1 H, dd, J5″,6b″ = 4.8 Hz,
H-6b″), 2.06−1.99 (24 H, 8s, 8 × CH3CO) ppm. 13C NMR (CDCl3),
δC: 171.23−169.37 (8s, 8 × CH3CO), 136.37 (s, Py-C2′), 131.00 (s,
Py-C3′), 153.41 (s, Py-C4′), 141.18 (q, 3JF−C = 11.5 Hz, Py-C5′), 141.82
1
g, 92%) as a syrup. Rf = 0.71 (3:1 cyclohexane−EtOAc). H NMR
(CDCl3), δH: 7.45−7.34 (5 H, m, Ar-H), 5.97 (1 H, dq, 3J1′,2′ = 4.8 Hz,
3J2′,3a′ = 20.8 Hz, 3J2′,3b′ = 9.2 Hz, H-2′), 5.91 (1 H, dq, 3J1″,2″ = 1.8 Hz,
3J2″,3a″ = 22.0 Hz, 3J2″,3b″ = 9.0 Hz, H-2″), 5.32 (1 H, dt, 4J1′,3′ = 1.2 Hz,
2J3a′,3b′ = 2.6 Hz, H-3′), 5.23 (1 H, dt, 4J1′,3′ = 0.8 Hz, 2J3a″,3b″ = 2.2 Hz,
H-3″), 4.96 (2 H, s, PhCH2), 4.71 (2 H, s, CH2-4), 4.61 (2 H, s, CH2-
5), 4.10 (2 H, dt, H-1′), 4.05 (2 H, dt, H-1″), 2.58 (3 H, s, CH3-2)
ppm. 13C NMR (CDCl3), δC: 136.50 (s, Py-C2′), 136.12 (s, Py-C3′),
153.32 (s, Py-C4′), 141.73 (q, 3JF−C = 6.8 Hz, Py-C5′), 134.94 (q, 2JF−C
2
1
(q, JF−C = 32.8 Hz, Py-C6′), 122.27 (q, JF−C = 274.0 Hz, CF3),
129.00−127.88 (m, Ph-C), 76.88 (s, PhCH2-O3), 71.49 (s, CH2-4),
68.14 (s, α4-OCH2(CH2)2O-), 68.02 (s, α5-OCH2(CH2)2O-), 67.07
(s, α4-O(CH2)2CH2O-), 67.01 (s, α5-O(CH2)2CH2O-), 63.52 (s,
CH2-5), 30.00 (s, α4-OCH2CH2CH2O-), 29.13 (s, α5-
OCH2CH2CH2O-), 20.10 (s, CH3-2), 101.02 (s, C-1′, C-1″), 68.58
(s, C-2′), 68.51 (s, C-2″), 71.95 (s, C-3′), 71.87 (s, C-3″), 67.76 (s, C-
4′), 67.66 (s, C-4″), 73.01 (s, C-5′), 72.92 (s, C-5″), 61.60 (s, C-6′),
61.50 (s, C-6″), 21.14−20.63 (8s, 8 × CH3CO) ppm. ESIMS: m/z
1103 [M+] (40%), 1104 [M + 1] (28%). Anal. Calcd for
C50H64NO23F3 (%): C, 54.40; H, 5.84; N, 1.27. Found: C, 54.36; H,
5.83; N, 1.25.
1
= 32.4 Hz, Py-C6′), 122.31 (q, JF−C = 273.9 Hz, CF3), 133.38 (s, α4-
OCH2CHCH2), 131.18 (s, α5-OCH2CHCH2), 129.64−127.45
(m, Ph-C), 118.24 (s, α4-OCH2CHCH2), 118.21 (s, α5-
OCH2CHCH2), 78.41 (s, PhCH2-O3), 72.69 (s, α4-OCH2CH
CH2), 72.39 (s, α5-OCH2CHCH2), 71.21 (s, CH2-4), 64.04 (s,
CH2-5), 20.59 (s, CH3-2) ppm. Anal. Calcd for C22H24NO3F3 (%): C,
64.86; H, 5.94; N, 3.44. Found: C, 64.82; H, 5.91; N, 3.42.
3-O-Benzyl-α4,α5-di-O-[3′-O-(β-D-glucopyranosyl)propyl]-6-
trifluoromethylpyridoxine 16. A solution of 15 (0.70 g) in
anhydrous MeOH (20 mL) containing 0.5 M NH3 was vigorously
stirred from 0 °C to rt for 2 days until TLC showed the reaction to be
complete. The mixture was then evaporated to dryness in vacuo.
Chromatography of the crude syrup on silica gel with EtOAc−MeOH
(4:1) afforded 16 (0.49 g) as a syrup in quantitative yield. Rf = 0.36
3-O-Benzyl-α4,α5-di-O-(3-hydroxypropyl)-6-trifluoromethyl-
pyridoxine 14. To a solution of 13 (0.41 g, 1.0 mmol) in dry dioxane
(10 mL) was added 9-BBN (8 mL, 4 mmol, 0.5 M solution in THF)
dropwise at 0 °C under argon. The reaction mixture was stirred at
room temperature for 24 h and cooled to 0 °C. Aqueous NaOH (3 M,
8 mL) and 30% H2O2 (1.3 mL) were added. The reaction mixture was
stirred at room temperature for 2 days. The aqueous phase was
extracted with ethyl acetate (4 × 50 mL). The combined organic
phases were washed with saturated NaCl solution and dried (Na2SO4).
The solution was filtered and the filtrate concentrated in vacuo to give
an almost colorless syrup, which was purified by column
chromatography on silica gel with 1:3 cyclohexane−EtOAc as the
1
(1:4 MeOH−EtOAc). H NMR (CDCl3), δH: 7.52−7.39 (5 H, m,
Ar−H), 5.00 (2 H, s, PhCH2), 3.60 (2 H, s, CH2-4), 3.49 (2 H, s,
CH2-5), 3.69−3.63 (4 H, m, α4-OCH2(CH2)2O-, α5-OCH2(CH2)2O-
), 3.47−3.37 (4 H, m, α4-O(CH2)2CH2O-, α5-O(CH2)2CH2O-), 2.52
(3 H, s, CH3-2), 1.83−1.78 (4 H, m, α4-OCH2CH2CH2O-, α5-
OCH2CH2CH2O-), 4.29 (2 H, d, JH‑2,OH‑2 = 7.6 Hz, HO-2′, 2″), 4.61
(1 H, d, JH‑3′,OH‑3′ = 5.2 Hz, HO-3′), 4.54 (1 H, d, JH‑3″,OH‑3″ = 5.2 Hz,
F
dx.doi.org/10.1021/jm300520q | J. Med. Chem. XXXX, XXX, XXX−XXX