Among the shape-persistent macrocycles we reported
are macrocycles 1 that consist of four benzene residues
connected via urea linkages.5a The design of 1 was based
on the assumption that the presence of intramolecular
H-bonds would enforce crescent conformations on the
corresponding uncyclized precursors and thus faciliatate
similar macrocyclization observed for aromatic oligo-
amide macrocycles.4b Macrocycles 1 are featured by a rigid,
preparation of macrocycles 1 was hampered by the highly
deactivated nature of the corresponding monomeric di-
amines that bear two electron-withdrawing ester groups.
In fact, macrocycles 1 could only be obtained in multiple
steps under harsh conditions from the condensation of
the corrsponding dimeric precurosors, with low overall
yields.5a
˚
planar backbone and a small (∼5 A across) internal cavity
defined by four inward-pointing urea oxygen atoms.5a
With their planar shape and noncollapsible cavities, these
macrocyclic molecules are reminiscent of porphyrins8
or expanded porphyrins.9 Unfortunately, the efficient
(3) (a) Gong, B. Acc. Chem. Res. 2008, 41, 1376. (b) Gong, B.; Zeng,
H. Q.; Zhu, J.; Yuan, L. H.; Han, Y. H.; Cheng, S. Z.; Furukawa, M.;
Parra, R. D.; Kovalevsky, A. Y.; Mills, J. L.; Skrzypczak-Jankun, E.;
Martinovic, S.; Smith, R. D.; Zheng, C.; Szyperski, T.; Zeng, X. C. Proc.
Natl. Acad. Sci. U.S.A. 2002, 99, 11583. (c) Yuan, L. H.; Zeng, H. Q.;
Yamato, K.; Sanford, A. R.; Feng, W.; Atreya, H. S.; Sukumaran,
D. K.; Szyperski, T.; Gong, B. J. Am. Chem. Soc. 2004, 126, 16528.
(d) Yuan, L. H.; Sanford, A. R.; Feng, W.; Zhang, A. M.; Ferguson,
J. S.; Yamato, K.; Zhu, J.; Zeng., H. Q.; Gong, B. J. Org. Chem. 2005, 70,
10660.
(4) (a) Yuan, L. H.; Feng, W.; Yamato, K.; Sanford, A. R.; Xu,
D. G.; Guo, H.; Gong, B. J. Am. Chem. Soc. 2004, 126, 11120. (b) Feng,
W.; Yamato, K.; Yang, L. Q.; Ferguson, J.; Zhong, L. J.; Zou, S. L.;
Yuan, L. H.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2009, 131, 2629.
(c) Yang, L. Q.; Zhong, L. J.; Yamato, K.; Zhang, X. H.; Feng, W.;
Deng, P. C.; Yuan, L. H.; Zeng, X. C.; Gong, B. New J. Chem. 2009, 33,
729.
(5) (a) He, H.; An, Y.; Yuan, L. H.; Yamato, K.; Feng, W.; Gerlitz,
O.; Zheng, C.; Gong, B. Chem. Commun. 2005, 3788–3790. (b) Zhang,
A. M.; Han, Y. H.; Yamato, K.; Zeng, X. C.; Gong, B. Org. Lett. 2006, 8,
803. (c) He, L.; An, Y.; Yuan, L. H.; Feng, W.; Li, M. F.; Zhang, D. C.;
Yamato, K.; Zheng, C.; Zeng, X. C.; Gong, B. Proc. Natl. Acad. Sci.
U.S.A. 2006, 103, 10850. (d) Ferguson, J. S.; Yamato, K.; Liu, R.; He, L.;
Zeng, X. C.; Gong, B. Angew. Chem., Int. Ed. 2009, 48, 3150. (e) Geng,
M. W.; Zhang, D. C.; Wu, X. X.; He, L.; Gong, B. Org. Lett. 2009,
11, 923.
We report herein the highly efficient, one-pot formation
of aromatic tetraurea macrocycles that share the same
backbone with 1. In this work, we have elucidated the
optimal conditions for efficiently forming aromatic tetra-
urea macrocycles, with or without backbone-rigidifying
intramolecular H-bonds, from the one-pot condensation
of readily available monomeric diamines under mild con-
ditions. The one-pot synthetic method described in this
paper allows the introduction of a variety of side chains to
the aromatic tetraurea backbones, leading to macrocycles
of tunable properties.
Scheme 1. One-Pot Formation of Macrocycles 2
(6) (a) Moore, J. S.; Zhang, J. Angew. Chem., Int. Ed. Engl. 1992,
31, 922. (b) Hensel, V.; Lutzow, K.; Jacob, J.; Gessler, K.; Saenger,
W.; Schluter, A. D. Angew. Chem., Int. Ed. 1997, 36, 2654. (c) Hoger,
S.; Meckenstock, A. D.; Pellen, H. J. Org. Chem. 1997, 62, 4556.
(c) Yamaguchi, Y.; Yoshida, Z.-I. Chem.;Eur. J. 2003, 9, 5430. (d) Jiang,
H.; Leger, J. M.; Guionneau, P.; Huc, I. Org. Lett. 2004, 6, 2985.
(e) Xing, L. Y.; Ziener, U.; Sutherland, T. C.; Cuccia, L. A. Chem.
Commun. 2005, 5751. (f) Sessler, J. L.; Tomat, E.; Lynch, V. M. Chem.
Commun. 2006, 4486. (g) Seo, S. H.; Jones, T. V.; Seyler, H.; Peters, J. O.;
Kim, T. H.; Chang, J. Y.; Tew, G. N. J. Am. Chem. Soc. 2006, 128, 9264.
(h) Shin, S. B. Y.; Yoo, B.; Todaro, L. J.; Kirshenbaum, K. J. Am. Chem.
Soc. 2007, 129, 3218. (i) Campbell, F.; Plante, J.; Carruthers, C.; Hardie,
M. J.; Prior, T. J.; Wilson, A. J. Chem. Commun. 2007, 2240. (j) Zhu,
Y. Y.; Li, C.; Li, G. Y.; Jiang, X. K.; Li, Z. T. J. Org. Chem. 2008, 73,
1745. (k) Qin, B.; Chen, X. Y.; Fang, X.; Shu, Y. Y.; Yip, Y. K.; Yan, Y.;
Pan, S. Y.; Ong, W. Q.; Ren, C. L.; Su, H. B.; Zeng, H. Q. Org. Lett.
2008, 10, 5127. (l) Li, F.; Gan, Q.; Xue, L.; Wang, Z. M.; Jiang, H.
Tetrahedron Lett. 2009, 50, 2367. (m) Qin, B.; Ren, C. L.; Ye, R. J.; Sun,
C.; Chiad, K.; Chen, X. Y.; Li, Z.; Xue, F.; Su, H. B.; Chass, G. A.; Zeng,
H. Q. J. Am. Chem. Soc. 2010, 132, 9564. (n) Frischmann, P. D.; Facey,
G. A.; Ghi, P. Y.; Gallant, A. J.; Bryce, D. L.; Lelj, F.; MacLachlan,
M. J. J. Am. Chem. Soc. 2010, 132, 3893.
(7) (a) Sanford, A. R.; Yuan, L. H.; Feng, W.; Yamato, K.; Flowers,
R. A.; Gong, B. Chem. Commun. 2005, 4720. (b) Helsel, A. J.; Brown,
A. L.; Yamato, K.; Feng, W.; Yuan, L. H.; Clements, A.; Harding, S. V.;
Szabo, G.; Shao, Z. F.; Gong, B. J. Am. Chem. Soc. 2008, 130, 15784.
(c) Yamato, K.; Yuan, L. H.; Feng, W.; Helsel, A. J.; Sanford, A. R.;
Zhu, J.; Deng, J. G.; Zeng, X. C.; Gong, B. Org. Biomol. Chem. 2009, 7,
3643–3647. (d) Yang, Y. A.; Feng, W.; Hu, J. C.; Zou, S. L.; Gao, R. Z.;
Yamato, K.; Kline, M.; Cai, Z. H.; Gao, Y.; Wang, Y. B.; Li, Y. B.;
Yang, Y. L.; Yuan, L. H.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2011,
133, 18590.
The preparation of macrocycles 2 was first attempted
by treating the corresponding diamine with triphosgene
(Scheme 1). With their electron-donating alkoxy groups,
the diamines were expected to have enhanced reactivity
and may lead to improved yields of 2. However, initial
atttempts to convert the diamines into their correspond-
ing isocyanates by heating with excess triphosgene led to
complex mixtures of products.
The conditions for forming macrocycle 2a were then
systematically probed by adding diamine 2A (0.96 mmol)
and triethylamine in CH2Cl2 to triphosgene in CH2Cl2
under N2 by varying temperature, concentration, and
solvents (Scheme 1). As shown in Table 1, in CH2Cl2, no
2a was formed when 2A was treated with triphosgene by
refluxing the reaction mixture, which may be due to the
instability of either diamine 2A or the intermediate formed
in the reaction at elevated temperature.
(8) Dolphin, D. The Porphyrins; Academic Press: New York, 1978; Vol. 1.
(9) Sessler, J. L.; Tvermoes, N. A.; Davis, J.; Anzenbacher, P.;
Jursikova, K.; Sato, W.; Seidel, D.; Lynch, V.; Black, C. B.; Try, A.;
Andrioletti, B.; Hemmi, G.; Mody, T. D.; Magda, D. J.; Kral, V. Pure
Appl. Chem. 1999, 71, 2009.
Org. Lett., Vol. 14, No. 10, 2012
2505