Journal of the American Chemical Society
Article
Metathesis in Natural Product Synthesis, Cossy, J., Arseniyadis, S.,
Meyer, C., Eds.; Wiley−VCH: Weinheim, Germany, 2010; p 343.
(4) (a) Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda,
(20) For the importance of interplay between kinetic Z selectivity
and postmetathesis isomerization in Mo- and W-catalyzed processes,
see: (a) Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.;
Hoveyda, A. H. Nature 2011, 471, 461. (b) Yu, M.; Wang, C.; Kyle, A.
F.; Jakubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Nature
2011, 479, 88.
A. H. J. Am. Chem. Soc. 2005, 127, 6877.
For application to
enantioselective natural product synthesis, see: (b) Gillingham, D. G.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 3860.
(21) For relative reactivity of O- and S-substituted Fischer-type
carbenes, see: (a) Louie, J.; Grubbs, R. H. Organometallics 2002, 21,
2153. (b) Katayama, H.; Urushima, H.; Ozawa, F. Chem. Lett. 1999,
369.
(5) For example, see: (a) Berlin, J. M.; Goldberg, S. D.; Grubbs, R.
H. Angew. Chem., Int. Ed. 2006, 45, 7591. (b) Kannenberg, A.; Rost,
D.; Eibauer, S.; Tiede, S.; Blechert, S. Angew. Chem., Int. Ed. 2011, 50,
3299.
(22) All computations were performed with the Gaussian 09 suite of
programs applying the generalized gradient approximation (GGA)
functional BP86. Convergence criteria were set to tight, the 6-
31G(d,p) basis set was used for hydrogen and carbon atoms, including
additional diffuse functions (+) on heteroatoms (oxygen and
nitrogen). Quasi-relativistic effective core potentials (ECPs) of the
Stuttgart−Dresden type were used for ruthenium and iodide (MWB28
and MWB46 keyword in Gaussian for basis set and ECP). The nature
of all stationary points was checked through frequency calculations.
Atomic polar tensor (APT) derived charges and free energy
corrections at standard conditions (298.15 K, 1 atm) are calculated
by default during frequency calculations. Frisch, M. J.; Trucks, G. W.;
Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.;
Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
(6) (a) La, D. S.; Ford, J. G.; Sattely, E. S.; Bonitatebus, P. J.;
Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 11603.
(b) La, D. S.; Sattely, E. S.; Ford, J. G.; Schrock, R. R.; Hoveyda, A. H.
J. Am. Chem. Soc. 2001, 123, 7767. (c) Cortez, G. A.; Schrock, R. R.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 4534. (d) Cortez, G.
A.; Baxter, C. A.; Schrock, R. R.; Hoveyda, A. H. Org. Lett. 2007, 9,
2871.
(7) For Mo-catalyzed enantioselective ROCM with enol ethers, see:
(a) Yu, M.; Ibrahem, I.; Hasegawa, M.; Schrock, R. R.; Hoveyda, A. H.
J. Am. Chem. Soc. 2012, 134, 2788. For related reactions of aryl olefin,
see: (b) Ibrahem, I.; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am.
Chem. Soc. 2009, 131, 3844.
(8) Ru-catalyzed ROCM with enol ethers is scarce, and all reported
cases are catalyzed by an achiral complex. See: (a) Katayama, H.;
Urushima, H.; Nishioka, T.; Wada, C.; Nagao, M.; Ozawa, F. Angew.
Chem., Int. Ed. 2000, 39, 4513. (b) Weeresakare, G. M.; Liu, Z.;
Rainier, J. D. Org. Lett. 2004, 6, 1625. (c) Liu, Z.; Rainier, J. D. Org.
Lett. 2005, 7, 131.
(9) Enol ethers are typically utilized to terminate a transformation
due to their “irreversible” formation of the Fischer-type carbenes or in
studies regarding catalyst initiation. See: (a) Maynard, H. D.; Okada,
S. Y.; Grubbs, R. H. Macromolecules 2000, 33, 6239. (b) Sanford, M. S.;
Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543.
(10) (a) Bornand, M.; Chen, P. Angew. Chem., Int. Ed. 2005, 44,
7909. (b) Bornand, M.; Torker, S.; Chen, P. Organometallics 2007, 26,
3585. (c) Torker, S.; Muller, A.; Sigrist, R.; Chen, P. Organometallics
2010, 29, 2735. (d) Torker, S.; Muller, A.; Chen, P. Angew. Chem., Int.
Ed. 2010, 49, 3762. (e) Jovic, M.; Torker, S.; Chen, P. Organometallics
2011, 30, 3971.
̈
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
Revision A.1; Gaussian, Inc.: Wallingford, CT, 2009.
(23) For the role of Curtin−Hammett kinetics in enantioselective
reactions with enantiomerically pure stereogenic-at-Mo alkylidene
complexes, see: Meek, S. J.; Malcolmson, S. J.; Li, B.; Schrock, R. R.;
Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 16407.
(11) (a) Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 8525.
(b) Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem.
Soc. 2011, 133, 9686. (c) Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert,
M. B.; Grubbs, R. H. J. Am. Chem. Soc. 2012, 134, 693.
(24) Control experiments indicate that the high E selectivity in
ROCM reactions with aryl olefins is not due to facile postmetathesis
isomerization. For example, subjection of a mixture of oxabicycle 2 and
styrene (20 equiv) to 0.1 mol % 1b at 22 °C leads to 63% conversion
after 30 min and the desired product exclusively as the E isomer (<2%
(12) See the Supporting Information for details.
(13) Previously reported DFT calculations for reactions of
methylidenes derived from first- and second-generation Ru complexes
with ethyl vinyl ether indicate that the two processes are highly
exothermic (10.0 and 13.6 kcal/mol, respectively). See: (a) Adlhart,
C.; Chen, P. J. Am. Chem. Soc. 2004, 126, 3496. For a computational
study involving vinyl halides, see: (b) Fomine, S.; Ortega, J. V.;
Tlenkopatchev, M. A. J. Mol. Catal. A 2007, 263, 121.
(14) See the Supporting Information for details regarding proof of
absolute stereochemistry and the identity of the olefin isomers
obtained in this study.
1
Z as judged by H NMR analysis).
(25) For Z-selective Ru-catalyzed cross-metathesis between vinyl
sulfides and 1,2-dichloroethylene, see: (a) Macnaughtan, M. L.; Gray,
J. B.; Gerlach, D. L.; Johnson, M. J. A.; Kampf, J. W. Organometallics
2009, 28, 2880. (b) Sashuk, V.; Samojlowicz, C.; Szadkowska, A.;
Grela, K. Chem. Commun. 2008, 2468.
(15) (a) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.;
Hoveyda, A. H. Nature 2008, 456, 933. (b) Reference 2j.
(16) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A.
H. J. Am. Chem. Soc. 1999, 121, 791.
(17) (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2000, 122, 8168. (b) Ref 2j.
(18) Since in an olefin metathesis reaction the structure of the
intermediate complex undergoes stereochemical inversion (detectable
only with stereogenic-at-metal complexes), higher structural rigidity in
species that contain a bidentate ligand can raise the barrier to such
interconversions, leading to diminution of catalytic activity. For a more
detailed discussion, see: (a) Reference 2j. (b) Reference 15.
(19) Another noteworthy example can be found in ref 8a, where an
ROCM reaction catalyzed by a first-generation Ru-dichloride is
reported to afford 85% Z-alkene product in 17% yield.
12779
dx.doi.org/10.1021/ja304827a | J. Am. Chem. Soc. 2012, 134, 12774−12779