J 2.5, 4-H), 6.23 (1 H, s, 2-H), 7.41–7.51 (5 H, m, Ar);
13C-NMR (100 MHz, CDCl3) δC −5.0, −4.4, −4.3, −4.2, 18.4,
18.5, 25.8 (3C), 26.2 (3C), 41.0, 70.7, 70.8, 126.6, 127.1 (2C),
129.0 (2C), 130.2, 137.5, 158.8, 199.5; LRMS (EI): 417 ([M −
Me]+, 5%), 375 (51), 274 (20), 243 (19), 147 (100), 141 (30);
IR (KBr) νmax/cm−1 1665 (CvO).
Acknowledgements
We gratefully acknowledge financial support from DEL
(PBAMcI), and thank Sheoliang Guan and Dany Leborgne for
assistance with synthetic aspects of the programme. All calcu-
lations were performed at the Poznan Supercomputing and Net-
working Center.
(4S,5S)-4,5-bis(tert-Butyldimethylsilyloxy)-3-chlorocyclohex-2-
enone 13d. Di-TBDMS derivative 12d (0.540 g, 1.4 mmol)
gave enone 13d as colourless crystalline solid (0.235 g, 42%);
m.p. 59 °C (Et2O–hexanes); Rf 0.49 (5% Et2O in hexanes); [α]D
− 33 (c 1.03, CHCl3); HRMS (EI): Found (M − CH3)+,
375.1579 requires C17H32O3Si2 35Cl 375.1573; 1H-NMR
(400 MHz, CDCl3) δH 0.08 (3 H, s, SiMe2), 0.09 (3 H, s,
SiMe2), 0.15 (3 H, s, SiMe2), 0.17 (3 H, s, SiMe2), 0.88 (9 H, s,
CMe3), 0.90 (9 H, s, CMe3), 2.43 (1 H, dd, J 16.6, 3.9, 6-H),
2.84 (1 H, dd, J 16.6, 10.2, 6′-H), 4.12 (1 H, dt, J 10.2, 3.2, 5-
H), 4.23–4.32 (1 H, m, 4-H), 6.17 (1 H, s, 2-H); 13C-NMR
(100 MHz, CDCl3) δC −4.6, −4.5, −4.3, −4.25, 18.4, 18.5, 26.0
(3C), 26.0 (3C), 41.8, 70.3, 74.5, 128.9, 157.6, 195.7; LRMS
(EI): 375 ([M − CH3]+, 3%), 333 (23), 232 (9), 147 (100); IR
(KBr) νmax/cm−1 1676 (CvO).
Notes and references
1 (a) B. L. Goodwin, Handbook of Biotransformations of Aromatic Com-
pounds, CRC Press LLC, Boca Raton, 2005, pp. 109–124; (b) R.
C. Bayley, S. Dagley and D. T. Gibson, Biochem. J., 1966, 101, 293;
(c) D. T. Gibson, V. Mahadevan and J. F. Davey, J. Bacteriol., 1974, 119,
930; (d) J. A. Buswell, J. Bacteriol., 1975, 124, 1399; (e) J. C. Spain and
D. T. Gibson, Appl. Environ. Microbiol., 1988, 54, 1399; (f) F. K. Higson
and D. D. Focht, Appl. Environ. Microbiol., 1989, 55, 946; (g) J.
C. Spain, G. J. Zylstyra, C. K. Blake and D. T. Gibson, Appl. Environ.
Microbiol., 1989, 55, 2648; (h) C. Hinterregger, R. Leitner, M. Loidl,
A. Ferschl and F. Streichsbier, Appl. Microbiol. Biotechnol., 1992, 37,
252; (i) G. Bestetti, E. Galli, B. Leoni, F. Pelizzoni and G. Sello, Appl.
Microbiol. Biotechnol., 1992, 37, 260; ( j) K. Lee, FEMS Microbiol.
Lett., 2006, 255, 316; (k) D. Kim, J. S. Lee, K. Y. Choi, Y.-S. Kim, J.
N. Choi, S.-K. Kim, J.-C. Chae, G. Zlystra, C. H. Lee and E. Kim,
Enzyme Microb. Technol., 2007, 41, 221.
2 (a) N. D. Sharma, C. C. R. Allen, J. F. Malone and D. R. Boyd, Chem.
Commun., 2009, 3633; (b) M. Kwit, J. Gawronski, D. R. Boyd, N.
D. Sharma and M. Kaik, Org. Biomol. Chem., 2010, 8, 5635; (c) D.
R. Boyd, N. D. Sharma, P. Stevenson, C. McRoberts, J. T. G. Hamilton,
J. M. Argudo, H. Mundi, L. A. Kulakov and C. C. R. Allen, Org.
Biomol. Chem., 2011, 9, 1479.
(4S,5S)-3-Bromo-4,5-bis(tert-butyldimethylsilyloxy)cyclohex-2-
enone 13e. Di-TBDMS derivative 12e (0.750 g, 1.78 mmol)
yielded enone 13e as colourless crystalline solid (0.286 g, 37%);
m.p. 58 °C (Et2O–hexane); Rf 0.41 (7.5% Et2O in hexane); [α]D
− 26 (c 0.86, CHCl3); HRMS (ES): Found (M + H)+, 435.1393
requires C18H36O3Si279Br 435.1386; 1H-NMR (400 MHz,
CDCl3) δH 0.09 (3 H, s, SiMe2), 0.10 (3 H, s, SiMe2), 0.17 (3 H,
s, SiMe2), 0.21 (3 H, s, SiMe2), 0.89 (9 H, s, CMe3), 0.92 (9 H,
s, CMe3) 2.45 (1 H, dd, J 16.5, 3.8, 6-H), 2.85 (1 H, dd, J 16.5,
10.3, 6′-H), 4.14 (1 H, br d, J 9.2, 5-H), 4.41 (1 H, d, J 1.9, 4-
H), 6.43 (1 H, s, 2-H); 13C-NMR (100 MHz, CDCl3) δC −4.5,
−4.3, −4.25, −4.1, 18.4, 18.6, 26.0 (3C), 26.1 (3C), 41.3, 70.4,
76.2, 128.5, 133.3, 195.4; LRMS (EI): 421 ([M − CH3]+, 3%),
379 (18), 278 (10), 213 (8), 147 (100); IR (KBr) νmax/cm−1
1674 (CbO)).
3 (a) D. A. Widdowson, D. W. Ribbons and S. D. Thomas, Janssen Chim.
Acta, 1990, 8, 3; (b) H. A. J. Carless, Tetrahedron: Asymmetry, 1992, 3,
795; (c) G. N. Sheldrake, in Chirality and Industry, ed. A. N. Collins,
G. N. Sheldrake and J. Crosby, John Wiley Ltd., Chichester, 1992, 127;
(d) S. M. Brown and T. Hudlicky, in Organic Synthesis: Theory and
Applications, ed. T. Hudlicky, JAI Press, Greenwich, 1993, vol. 2, p. 113;
(e) S. M. Resnick, K. Lee and D. T. Gibson, J. Ind. Microbiol., 1996, 17,
438; (f) D. R. Boyd and G. N. Sheldrake, Nat. Prod. Rep., 1998, 15, 309;
(g) T. Hudlicky, D. Gonzalez and D. T. Gibson, Aldrichimica Acta.,
1999, 32, 35; (h) D. T. Gibson and R. E. Parales, Curr. Opin. Biotechnol.,
2000, 11, 236; (i) D. R. Boyd, N. D. Sharma and C. C. R. Allen, Curr.
Opin. Biotechnol., 2001, 12, 564; ( j) R. A. Johnson, Org. React., 2004,
63, 117; (k) D. R. Boyd and T. D. H. Bugg, Org. Biomol. Chem., 2006,
4, 181; (l) K. A. B. Austin, M. Matveenko, T. A. Reekie and M.
G. Banwell, Chem. Aust., 2008, 75, 3; (m) T. Hudlicky and J. W. Reed,
Synlett, 2009, 685; (n) T. Hudlicky and J. W. Reed, Chem. Soc. Rev.,
2009, 38, 3117.
4 V. Berberian, C. C. R. Allen, N. D. Sharma, D. R. Boyd and C. Hardacre,
Adv. Synth. Catal., 2007, 349, 727.
5 D. R. Boyd, J. Blacker, B. Byrne, H. Dalton, M. V. Hand, S. Kelly, R.
A. More O’Ferrall, S. N. Rao, N. D. Sharma, G. N. Sheldrake and
H. Dalton, J. Chem. Soc., Chem. Commun., 1994, 313.
6 (a) A. Evidente, L. Sparapano, A. Andolfi, G. Bruno, F. Giordano and
A. Motta, Phytopathol. Mediterr., 2000, 39, 299; (b) A. Evidente,
L. Sparapano, O. Fierro, G. Bruno, F. Giordano and A. Motta, Phyto-
chemistry, 1998, 48, 1139.
7 (a) J. Gawronski, M. Kwit, D. R. Boyd, N. D. Sharma, J. F. Malone and
A. Drake, J. Am. Chem. Soc., 2005, 127, 4308; (b) D. R. Boyd, N.
D. Sharma, G. P. Coen, P. Gray, J. F. Malone and J. Gawronski, Chem.–
Eur. J., 2007, 13, 5804; (c) M. Kwit, N. D. Sharma, D. R. Boyd and
J. Gawronski, Chirality, 2008, 20, 609.
Cyclohexenone diols 4cS–4eS. A solution of each enone (13c–
13e, 1 equivalent) in dry THF (∼4 ml) was treated with tetra-
butylammonium fluoride (1 M, THF, 3 equivalents) at 0 °C.
After stirring the reaction mixture at room temperature for 3 h
the solvent was removed under reduced pressure and the residue
purified by PLC (75% EtOAc in hexanes) to yield cyclohexe-
none diol (4cS–4eS). In each case the spectral data and specific
rotation ([α]D) value for the synthesised sample was identical to
that of the corresponding metabolite (4cS–4eS).2c
(4R,5S)-4,5-Dihydroxy-3-phenylcyclohex-2-enone 4cS. Enone
13c (0.2 g, 0.46 mmol) furnished cyclohexenone diol 4cS as col-
ourless crystalline solid (0.049 g, 52%).
8 (a) R. D. Burnett and D. N. Kirk, J. Chem. Soc., Perkin Trans. 1, 1981,
1460; (b) J. K. Gawronski, Tetrahedron, 1982, 38, 3; (c) N. Kirk, Tetra-
hedron, 1986, 42, 777; (d) J. Gawronski, Conformations, Chiroptical and
Related Spectral Properties of Enones, in The Chemistry of Enones, ed. S.
Patai and Z. Rappoport, J. Wiley, 1989, ch. 3; (e) D. A. Lightner and J.
E. Gurst, Organic Conformational Analysis and Stereochemistry from
Circular Dichroism Spectroscopy, Wiley-VCH, 2000; (f) G. Snatzke,
Angew. Chem., Int. Ed. Engl., 1979, 18, 363; (g) G. Snatzke, in Funda-
mental Aspects and Recent Developments in Optical Rotatory Dispersion
and Circular Dichroism, ed. F. Ciardelli, P. Salvadori, Heyden, London,
1973, pp. 109–124; (h) G. Snatzke, Tetrahedron, 1965, 21, 413;
(4S,5S)-3-Chloro-4,5-dihydroxycyclohex-2-enone 4dS. Enone
13d (0.2 g, 0.51 mmol) yielded cyclohexenone diol 4dS as col-
ourless crystalline solid (0.024 g, 29%).
(4S,5S)-3-Bromo-4,5-dihydroxycyclohex-2-enone 4eS. Enone
13e (0.280 g, 0.64 mmol) gave cyclohexenone diol 4eS as col-
ourless crystalline solid (0.040 g, 30%).
6228 | Org. Biomol. Chem., 2012, 10, 6217–6229
This journal is © The Royal Society of Chemistry 2012