366
M.K. Dennis et al. / Journal of Steroid Biochemistry & Molecular Biology 127 (2011) 358–366
exhibit slight inhibitory activity on estrogen-mediated ERE activa-
tion, its complete lack of stimulatory activity represents the more
important consideration. For G-1, it is not clear that the inhibitory
activity is a result of ER binding, as we were previously unable to
detect significant competition even at 10 M [9]. It is therefore
possible that this inhibitory effect is indirect as a result of rapid
signaling initiated by GPER. Interestingly, very high doses of G-1
have recently been shown to inhibit estrogen-mediated uterine
epithelial cell proliferation in vivo through inhibition of stromal
ERK1/2 activation and ER␣ phosphorylation [29]. Alternatively,
G15 demonstrates both binding at high concentrations as well
as stimulatory activity in the absence of estrogen and inhibitory
activity in the presence of estrogen. The observation of binding
suggests that these functional effects may be direct via ER␣ bind-
ing. However, G15 would typically not be used alone (except as
a negative control) and thus the stimulatory activity would likely
not be of concern, unless potentially used in combination with
G-1, where ERE activation could confound results. Furthermore,
any effects would be limited to “long-term” assays where ERE
activation could be involved and not rapid or acute events (e.g.
<1 h).
The improved selectivity of G36 in terms of <∼5% activation
and inhibition of ERE-mediated transcription at 10 M will make it
highly useful for probing the functions of GPER in a wide range
of complex assays and model systems that express one or both
of the classical ERs in addition to GPER. Nevertheless, as with any
pharmacological agent, conclusions regarding the involvement of
the presumed target should be confirmed with the use of siRNA
or knockout mice where possible. Building from the numerous
documented successful applications using G15 to examine the con-
tributions of GPER to estrogen physiology, we believe that the
development of G36 will give researchers a more selective tool to
investigate GPER function.
[6] E.J. Filardo, J.A. Quinn, K.I. Bland, A.R. Frackelton Jr., Estrogen-induced activation
of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30,
and occurs via trans-activation of the epidermal growth factor receptor through
release of HB-EGF , Mol. Endocrinol. 14 (10) (2000) 1649–1660.
[7] C.M. Revankar, D.F. Cimino, L.A. Sklar, J.B. Arterburn, E.R. Prossnitz, A transmem-
brane intracellular estrogen receptor mediates rapid cell signaling , Science 307
(5715) (2005) 1625–1630.
[8] E.R. Prossnitz, L.A. Sklar, T.I. Oprea, J.B. Arterburn, GPR30: a novel therapeu-
tic target in estrogen-related disease , Trends Pharmacol. Sci. 29 (3) (2008)
116–123.
[9] C.G. Bologa, C.M. Revankar, S.M. Young, B.S. Edwards, J.B. Arterburn, A.S. Kise-
lyov, M.A. Parker, S.E. Tkachenko, N.P. Savchuck, L.A. Sklar, T.I. Oprea, E.R.
Prossnitz, Virtual and biomolecular screening converge on a selective agonist
for GPR30 , Nat. Chem. Biol. 2 (4) (2006) 207–212.
[10] M.K. Dennis, R. Burai, C. Ramesh, W.K. Petrie, S.N. Alcon, T.K. Nayak, C.G. Bologa,
A. Leitao, E. Brailoiu, E. Deliu, N.J. Dun, L.A. Sklar, H.J. Hathaway, J.B. Arterburn,
T.I. Oprea, E.R. Prossnitz, In vivo effects of a GPR30 antagonist , Nat. Chem. Biol.
5 (6) (2009) 421–427.
[11] J. Teng, Z.Y. Wang, E.R. Prossnitz, D.E. Bjorling, The G protein-coupled recep-
tor GPR30 inhibits human urothelial cell proliferation , Endocrinology 149 (8)
(2008) 4024–4034.
[12] J. Kuhn, O.A. Dina, C. Goswami, V. Suckow, J.D. Levine, T. Hucho, GPR30 estrogen
receptor agonists induce mechanical hyperalgesia in the rat , Eur. J. Neurosci.
27 (7) (2008) 1700–1709.
[13] S.D. Noel, K.L. Keen, D.I. Baumann, E.J. Filardo, E. Terasawa, Involvement of
G-Protein coupled receptor 30 (GPR30) in rapid action of estrogen in primate
LHRH neurons , Mol. Endocrinol. 23 (2009) 349–359.
[14] E. Brailoiu, S.L. Dun, G.C. Brailoiu, K. Mizuo, L.A. Sklar, T.I. Oprea, E.R.
Prossnitz, N.J. Dun, Distribution and characterization of estrogen receptor G
protein-coupled receptor 30 in the rat central nervous system , J. Endocrinol.
193 (2) (2007) 311–321.
[15] C. Wang, B. Dehghani, Y. Li, L.J. Kaler, T. Proctor, A.A. Vandenbark, H.
Offner, Membrane estrogen receptor regulates experimental autoimmune
encephalomyelitis through up-regulation of programmed death 1 , J. Immunol.
182 (5) (2009) 3294–3303.
[16] E. Blasko, C.A. Haskell, S. Leung, G. Gualtieri, M. Halks-Miller, M. Mahmoudi,
M.K. Dennis, E.R. Prossnitz, W.J. Karpus, R. Horuk, Beneficial role of the GPR30
agonist G-1 in an animal model of multiple sclerosis , J. Neuroimmunol. 214
(1–2) (2009) 67–77.
[17] E. Haas, I. Bhattacharya, E. Brailoiu, M. Damjanovic, G.C. Brailoiu, X. Gao, L.
Mueller-Guerre, N.A. Marjon, A. Gut, R. Minotti, M.R. Meyer, K. Amann, E.
Ammann, A. Perez-Dominguez, M. Genoni, D.J. Clegg, N.J. Dun, T.C. Resta, E.R.
Prossnitz, M. Barton, Regulatory role of G protein-coupled estrogen receptor
for vascular function and obesity , Circ. Res. 104 (3) (2009) 288–291.
[18] S.H. Lindsey, K.A. Carver, E.R. Prossnitz, M.C. Chappell, Vasodilation in response
to the GPR30 agonist G-1 is not different from estradiol in the mRen2. Lewis
female rat , J. Cardiovasc. Pharmacol. (2011).
Acknowledgments
[19] C. Peyton, P. Thomas, Involvement of epidermal growth factor receptor sig-
naling in estrogen inhibition of oocyte maturation mediated through the G
protein-coupled estrogen receptor (GPER) in Zebrafish (Danio rerio) , Biol
Reprod 85 (1) (2011) 42–50.
[20] S. Gingerich, G.L. Kim, J.A. Chalmers, M.M. Koletar, X. Wang, Y. Wang, D.D.
Belsham, Estrogen receptor alpha and G-protein coupled receptor 30 mediate
the neuroprotective effects of 17beta-estradiol in novel murine hippocampal
[21] Z. Jenei-Lanzl, R.H. Straub, T. Dienstknecht, M. Huber, M. Hager, S. Grassel, R.
Kujat, M.K. Angele, M. Nerlich, P. Angele, Estradiol inhibits chondrogenic differ-
entiation of mesenchymal stem cells via nonclassic signaling , Arthritis Rheum.
62 (4) (2011) 1088–1096.
This work was supported by NIH grants R01 CA127731 (ERP,
JBA, TIO), CA118743 (ERP) and CA116662 (ERP), and MH084690
(LAS); the New Mexico Cowboys for Cancer Research Foundation
(JBA, ERP); Oxnard Foundation (ERP); and the Stranahan Foun-
dation (ERP). Data were generated in the Flow Cytometry and
Facility.html) Shared Resource Centers supported by the Univer-
sity of New Mexico Health Sciences Center and the University of
New Mexico Cancer Center.
[22] A.M. Brzozowski, A.C. Pike, Z. Dauter, R.E. Hubbard, T. Bonn, O. Engstrom, L.
Ohman, G.L. Greene, J.A. Gustafsson, M. Carlquist, Molecular basis of agonism
and antagonism in the oestrogen receptor , Nature 389 (6652) (1997) 753–758.
[23] R. Burai, C. Ramesh, M. Shorty, R. Curpan, C. Bologa, L.A. Sklar, T. Oprea, E.R.
Prossnitz, J.B. Arterburn, Highly efficient synthesis and characterization of the
GPR30-selective agonist G-1 and related tetrahydroquinoline analogs , Org.
Biomol. Chem. 8 (2010) 2252–2259.
[24] Y. Yamaguchi, H. Takei, K. Suemasu, Y. Kobayashi, M. Kurosumi, N. Harada, S.
Hayashi, Tumor–stromal interaction through the estrogen-signaling pathway
in human breast cancer , Cancer Res. 65 (11) (2005) 4653–4662.
[25] S. Ramirez, C.T. Aiken, B. Andrzejewski, L.A. Sklar, B.S. Edwards,
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
High-throughput flow cytometry: validation in microvolume bioassays
Cytometry A 53 (1) (2003) 55–65.
[26] W. Rasband, ImageJ , NIH, Bethesda, MD, 2007.
,
[1] D.P. Edwards, Regulation of signal transduction pathways by estrogen and pro-
gesterone , Annu. Rev. Physiol. 67 (2005) 335–376.
[2] C.A. Lange, D. Gioeli, S.R. Hammes, P.C. Marker, Integration of rapid signaling
events with steroid hormone receptor action in breast and prostate cancer ,
Annu. Rev. Physiol. 69 (2007) 171–199.
[3] E.R. Prossnitz, J.B. Arterburn, H.O. Smith, T.I. Oprea, L.A. Sklar, H.J. Hathaway,
Estrogen signaling through the transmembrane G protein-coupled receptor
GPR30 , Annu. Rev. Physiol. 70 (2008) 165–190.
[4] L. Albanito, A. Madeo, R. Lappano, A. Vivacqua, V. Rago, A. Carpino, T.I. Oprea,
E.R. Prossnitz, A.M. Musti, S. Ando, M. Maggiolini, G protein-coupled recep-
tor 30 (GPR30) mediates gene expression changes and growth response to
17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells , Cancer
Res. 67 (4) (2007) 1859–1866.
[27] S. Kousteni, T. Bellido, L.I. Plotkin, C.A. O’Brien, D.L. Bodenner, L. Han, K. Han, G.B.
DiGregorio, J.A. Katzenellenbogen, B.S. Katzenellenbogen, P.K. Roberson, R.S.
Weinstein, R.L. Jilka, S.C. Manolagas, Nongenotropic, sex-nonspecific signaling
through the estrogen or androgen receptors: dissociation from transcriptional
activity , Cell 104 (5) (2001) 719–730.
[28] A. Gill, M. Jamnongjit, S.R. Hammes, Androgens promote maturation and
signaling in mouse oocytes independent of transcription: a release of inhi-
bition model for mammalian oocyte meiosis , Mol. Endocrinol. 18 (1) (2004)
97–104.
[29] F. Gao, X. Ma, A.B. Ostmann, S.K. Das, GPR30 activation opposes
estrogen-dependent uterine growth via inhibition of stromal ERK1/2 and
estrogen receptor alpha (ER{alpha}) phosphorylation signals , Endocrinology
152 (4) (2011) 1434–1447.
[5] D.P. Pandey, R. Lappano, L. Albanito, A. Madeo, M. Maggiolini, D. Picard, Estro-
genic GPR30 signalling induces proliferation and migration of breast cancer
cells through CTGF , EMBO J. 28 (5) (2009) 523–532.