Journal of the American Chemical Society
Communication
Fullerenes. Principles and Applications; RSC: Cambridge, 2011.
(d) Martín, N. Chem. Commun. 2006, 2093.
(2) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R.
E. Nature 1985, 318, 162.
(3) (a) Iijima, S. Nature 1991, 354, 56. (b) Iijima, S.; Ichihashi, T.
Nature 1993, 363, 603. (c) Bethune, D. S.; Klang, C. H.; de Vries, M.
S.; Gorman, G.; Savoy, R.; Vasquez, J.; Beyers, R. Nature 1993, 363,
605.
(4) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,
Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306,
666.
(5) For a review on the nanoforms of carbon, see: Delgado, J. L.;
Herranz, M. A.; Martín, N. J. Mater. Chem. 2008, 18, 1417.
(6) (a) Thilgen, C.; Gosse, I.; Diederich, F. Top. Stereochem. 2003,
23, 1. (b) Thilgen, C.; Diederich, F. Chem. Rev. 2006, 106, 5049.
(7) (a) Novello, F.; Prato, M.; Da Ros, T.; De Amici, M.; Bianco, A.;
Toniolo, C.; Maggini, M. Chem. Commun. 1996, 903. (b) Illescas, B.;
Figure 1. Plausible mechanism of the AMY cycloaddition onto
different double bonds.
Rife,
́
J.; Ortuno, R. M.; Martín, N. J. Org. Chem. 2000, 65, 6246.
̃
stable than the relevant C60 anion due to the more planar
geometry.9 Thus, all the regioisomers 5a−e present a trans
conformation regardless of the type of aromatic substitution
(Table 2). In sharp contrast, when conventional olefins are
used (right part of Figure 1), the zwitterionic intermediate is
not sufficiently stabilized to allow a rotation and, therefore, exo-
cis adducts are formed. Finally, other chiral complexes, namely
Ag(I)/(−)BPE or Cu(II)/Fesulphos, allow the formation of
favorable secondary interactions leading to cis (fullero)-
pyrrolidines, and endo isomers when conventional olefins are
employed.20
In conclusion, we report a set of chiral metal complexes able
to afford a stereodivergent synthesis of (fullero)pyrrolidines
with complete control of the diastereo- and enantioselective
outcome. Particularly, the Cu(II)/Segphos complex directs the
AMY cycloaddition toward the 2,5-trans disubstituted pyrroli-
dinofullerenes or to the exo diastereomer when conventional
olefins are used. These results pave the way to the synthesis of
very useful fulleropyrrolidines with complete control of their
stereochemistry, thus broadening the scope of their use for
biomedical and materials science applications.
(c) Illescas, B. M.; Martín, N.; Poater, J.; Sola,
Ortuno, R. M. J. Org. Chem. 2005, 70, 6929. (d) Matsuo, Y.; Mitani,
Y.; Zhong, Y.-W.; Nakamura, E. Organometallics 2006, 25, 2826.
(e) Zhong, Y.-W.; Matsuo, Y.; Nakamura, E. Chem.Asian J. 2007, 2,
358. (f) Nakae, T.; Matsuo, Y.; Nakamura, E. Org. Lett. 2008, 10, 621.
̀
M.; Aguado, G. P.;
̃
́
(8) Filippone, S.; Maroto, E. E.; Martín-Domenech, A.; Suarez, M.;
Martín, N. Nat. Chem. 2009, 1, 578.
́
́
(9) Maroto, E. E.; de Cozar, A.; Filippone, S.; Martín-Domenech, A.;
Suarez, M.; Cossío, F. P.; Martín, N. Angew. Chem., Int. Ed. 2011, 50,
6060.
(10) Sawai, K.; Takano, Y.; Izquierdo, M.; Filippone, S.; Martín, N.;
Slanina, Z.; Mizorogi, N.; Waelchli, M.; Tsuchiya, T.; Akasaka, T.;
Nagase, S. J. Am. Chem. Soc. 2011, 133, 17746.
(11) Among the many different chemical procedures for the
preparation of modified fullerenes, 1,3-dipolar cycloaddition of
azomethine ylides is the most straightforward and versatile, and a
large variety of cycloadducts have been prepared since it was first
reported in 1993. See: (a) Maggini, M.; Scorrano, G.; Prato, M. J. Am.
Chem. Soc. 1993, 115, 9798. (b) Prato, M.; Maggini, M. Acc. Chem. Res.
1998, 31, 519.
(12) Harwood, L. M.; Vickers, R. J. Synthetic Applications of 1,3-
Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural
Products; John Wiley & Sons, Inc.: 2003; p 169.
(13) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.
(14) (a) Najera, C.; Sansano, J. M. Angew. Chem., Int. Ed. 2005, 44,
6272. (b) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106,
4484. (c) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887.
ASSOCIATED CONTENT
* Supporting Information
Other data, experimental procedures, and spectral data for all
compounds. This material is available free of charge via the
■
S
(15) de Coz
10858.
́
ar, A.; Cossio, F. P. Phys. Chem. Chem. Phys. 2011, 13,
(16) (a) Arai, T.; Yokoyama, N.; Mishiro, A.; Sato, H. Angew. Chem.,
Int. Ed. 2010, 49, 7895. (b) Kim, H. Y.; Li, J.-Y.; Kim, S.; Oh, K. J. Am.
Chem. Soc. 2011, 133, 20750.
(17) Unlike C60, C70 lacks spherical symmetry and has four different
types of double bonds on the carbon cage. The most common
additions to [70]fullerene proceed in a 1,2 manner with a
regioselectivity driven by the release of the strain of the double
bond. Accordingly, additions occur preferentially at the most strained
fullerene double bonds, namely those located at the polar zone (α site
followed by β, γ, and δ sites); see also ref 9.
(18) (a) Maggini, M.; Scorrano, G.; Bianco, A.; Toniolo, C.;
Sijbesma, R. P.; Wudl, F.; Prato, M. J. Chem. Soc., Chem. Commun.
1994, 305. (b) Wilson, S. R.; Lu, Q.; Cao, J.; Wu, Y.; Welch, C. J.;
Schuster, D. I. Tetrahedron 1996, 52, 5131. (c) Bianco, A.; Maggini,
M.; Scorrano, G.; Toniolo, C.; Marconi, G.; Villani, C.; Prato, M. J.
Am. Chem. Soc. 1996, 118, 4072.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Financial support by the Ministerio de Ciencia e Innovacion
(MINECO) of Spain (CTQ2011-24652, PIB2010JP-00196,
and CSD2007-00010 projects CM (Madrisolar-2)); S.F.
acknowledges MINECO and ESF for R&C grant. E.E.M. is
thankful for a research grant; M.S. is indebted to Programa del
Grupo Santander 2012.
■
́
(19) Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata,
S.; Komatsu, M. Org. Lett. 2003, 5, 5043.
(20) Gothelf, K. V.; Jorgensen, K. A. Chem. Rev. 1998, 98, 863. For
exo isomer, see ref 19.
REFERENCES
■
(1) (a) Guldi, D. M., Martín, N., Eds. Fullerenes: From Synthesis to
Optoelectronic Properties; Kluver Academic Publishers: Dordrecht,
2002. (b) Hirsch, A.; Bettreich, M. Fullerenes, Chemistry and Reaction;
Wiley-VCH: Weinheim, 2005. (c) Langa, F., Nierengarten, J.-F., Eds.
C
dx.doi.org/10.1021/ja306105b | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX