10.1002/ejoc.201801025
European Journal of Organic Chemistry
FULL PAPER
1-(1’-Thienyl)-4,4,4-trifluorobutan-1-one (2p):
2012, 22, 2693–2697; b) B. A. Czeskis, D. K. Satonin, J. Label. Compd.
Radiopharm 2017, 60, 110–115.
[3]
a) D. G. Kananovich, Y. A. Konik, D. M. Zubrytski, I. Järving, M. Lopp,
Chem. Commun. 2015, 51, 8349–8352; b) X.-P. He, Y.-J. Shu, J.-J. Dai,
W.-M. Zhang, Y.-S. Feng, H.-J. Xu, Org. Biomol. Chem. 2015, 13,
7159–7163; c) Y. Li, Z. Ye, T. M. Bellman, T. Chi, M. Dai, Org. Lett.
2015, 17, 2186–2189.
2p was prepared according to the general procedure using 1p as the
starting material. After purification by flash chromatography on silica gel
(eluent: EtOAc/petroleum ether = 1/10), 2p was obtained as a white solid.
Yield: 58% (60 mg); mp. 69.4 - 69.9 °C ; IR (KBr) ṽ = 3070, 1652, 1385,
1
1143, 760 cm-1; H NMR (400 MHz, CDCl3) δ = 7.8 (dd, J = 3.7, 0.5 Hz,
[4]
[5]
a) P. Gao, Y.-W. Shen, R. Fang, X.-H. Hao, Z.-H. Qiu, F. Yang, X.-B.
Yan, Q. Wang, X.-J. Gong, X.-Y. Liu, Y.-M. Liang, Angew. Chem. Int.
Ed. 2014, 53, 7629–7633; Angew. Chem. 2014, 126, 7759–7763; b) S.
Park, J. M. Joo, E. J. Cho, Eur. J. Org. Chem. 2015, 2015, 4093–4097.
a) X. Liu, F. Xiong, X. Huang, L. Xu, P. Li, X. Wu, Angew. Chem. Int. Ed.
2013, 52, 6962–6966; Angew. Chem. 2013, 125, 7100–7104; b) Z.-M.
Chen, W. Bai, S.-H. Wang, B.-M. Yang, Y.-Q. Tu, F.-M. Zhang, Angew.
Chem. Int. Ed. 2013, 52, 9781–9785; Angew. Chem. 2013, 125, 9963–
9967; c) H. Egami, R. Shimizu, Y. Usui, M. Sodeoka, Chem. Commun.
2013, 49, 7346–7348.
1H), 7.67 (d, J = 4.9 Hz, 1H), 7.18 - 7.12 (m, 1H), 3.19 (t, J = 9.9 Hz, 2H),
2.68 - 2.47 (m, 2H). 13C NMR (101 MHz, CDCl3) δ = 187.4, 141.4, 132.5,
130.4, 126.5, 125.2 (q, J = 276.7 Hz), 29.9 (q, J = 2.7 Hz), 26.6 (q, J =
30.0 Hz). 19F NMR (470 MHz, CDCl3) δ = -66.47 (t, J = 10.8 Hz). HRMS
(EI) m/z: calcd for C7H7F3S [M+.] 180.0221, found: 180.0161.
Procedure for the synthesis of 1-phenyl-4,4,4-trifluorobut-2-en-1-ol
(3a):[16]
To
a
solution
of
4-phenyl-1,1,1-trifluorobut-2-en-2-yl
[6]
[7]
[8]
S. Okusu, Y. Sugita, E. Tokunaga, N. Shibata, Beilstein J. Org. Chem.
2013, 9, 2189–2193.
trifluoromethanesulfonate (1a) (0.4 mmol) in DMF (5 mL) was added
DBU (1.6 mmol) and H2O (0.4 mmol) at -40 oC. After the reaction was
complete (monitored by TLC), the reaction solvent was poured into water
(15 mL) and extracted with EtOAc (3 × 15 mL). The combined organic
extracts were washed with brine and dried over anhydrous sodium
sulfate. The solvent was removed under reduced pressure. The crude
product was purified by column chromatography on silica gel (eluent:
EtOAc/petroleum ether = 1/5) to afford the product 3a as a colorless oil.
Yield: 78% (63 mg); IR (KBr) ṽ = 3566, 1724, 1251, 1142, 973, 767 cm-1;
1H NMR (400 MHz, CDCl3) δ = 7.39 - 7.35 (m, 3H), 7.32 - 7.28 (m, 2H),
6.51 - 6.45 (m, 1H), 6.03 - 5.94 (m, 1H), 5.25 - 5.23 (m, 1H), 2.52 (br, 1H).
13C NMR (100 MHz, CDCl3) δ 141.1 (q, J = 6.1 Hz), 140.5, 129.0, 128.7,
126.6, 123.3 (q, J = 269.3 Hz), 117.9 (q, J = 34.1 Hz), 72.7.19F NMR (377
MHz, CDCl3) δ -64.38 (d, J = 6.3 Hz, 3F).
M. M. Lerch, B. Morandi, Z. K. Wickens, R. H. Grubbs, Angew. Chem.
Int. Ed. 2014, 53, 8654–8658; Angew. Chem. 2014, 126, 8798–8802.
a) B. E. Norcross, P. E. Klinedinst Jr, F. H. Westheimer, J. Am. Chem.
Soc. 1962, 84, 797–802; b) X. Xia, M. Wu, R. Jin, T. Cheng, G. Liu,
Green Chem. 2015, 17, 3916–3922; c) V. Bizet, X. Pannecoucke, J.-L.
Renaud, D. Cahard, Adv. Synth. Catal. 2013, 355, 1394–1402; d) B.
Huang, C. Li, H. Wang, C. Wang, L. Liu, J. Zhang, Org. Lett. 2017, 19,
5102–5105; e) M. Tao, W. Zhou, J. Zhang, Adv. Synth. Catal. 2017,
359, 3347–3353; f) W. Zhou, H. Wang, M. Tao, C.-Z. Zhu, T.-Y. Lin, J.
Zhang, Chem. Sci. 2017, 8, 4660–4665; g) Q. Jiang, T. Guo, Z. Yu, J.
Org. Chem. 2017, 82, 1951–1960.
[9]
a) S. Martinez-Erro, A. Sanz-Marco, A. B. Gómez, A. Vázquez-Romero,
M. S. G. Ahlquist, B. Martín-Matute, J. Am. Chem. Soc. 2016, 138,
13408–13414; b) V. Bizet, X. Pannecoucke, J.-L. Renaud, D. Cahard,
Angew. Chem. Int. Ed. 2012, 51, 6467–6470; Angew. Chem. 2012, 124,
6573–6576; c) Y. Hamada, T. Kawasaki-Takasuka, T. Yamazaki,
Beilstein J. Org. Chem. 2017, 13, 1507–1512; d) V. Bizet, X.
Pannecoucke, J.-L. Renaud, D. Cahard, J. Fluorine Chem. 2013, 152 ,
56–61; e) T. Kagawa, K. Fujita, K. Kawada, J. Fluorine Chem. 2013,
152 , 77–80.
Acknowledgements
The authors gratefully acknowledge the financial support of the
National Natural Science Foundation of China (Nos. 21878037
and 21576041). We also thank Prof. Baomin Wang, Dr. Yuming
Song, and Dr. Ying Peng (Dalian University of Technology,
China) for valuable discussions.
[10]
[11]
T.-P. Yang, Q. Li, J.-H. Lin, J.-C. Xiao, Chem. Commun. 2014, 50,
1077–1079.
B. Gao, Y. Zhao, J. Hu, Angew. Chem. Int. Ed. 2015, 54, 638–642;
Angew. Chem. 2015, 127, 648–652.
[12] a) N. Yi, H. Zhang, C. Xu, W. Deng, R. Wang, D. Peng, Z. Zeng, J. Xiang,
Org. Lett. 2016, 18, 1780–1783; b) X. Yu, S. M. Cohen, J. Am. Chem.
Soc. 2016, 138, 12320–12323.
Keywords: fluorine • ketones • Domino reactions • β-
trifluoromethyl ketones • trifluoromethyl alkenyl triflates
[13] a) M. Huang, L. Li, Z.-G. Zhao, Q.-Y. Chen, Y. Guo, Synthesis 2015, 47,
3891–3900; b) T. Umemoto, Y. Gotoh. Bull Chem. Soc. Jpn. 1987, 60,
3823–3825; c) T. Okano, T. Uekawa, S. Eguchi, Bull Chem. Soc. Jpn.
1989, 62, 2575–2579; d) K. Miura, M. Taniguchi, K. Nozaki, K. Oshima,
K. Utimoto, Tetrahedron Lett. 1990, 31, 6391–6394.
[1]
a) Y. Zhou, J. Wang, Z. u ang hu ce a
Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422–518; b) C. Ni,
J. Hu, Chem. Soc. Rev. 2016, 45, 5441–5454; c) T. Hasegawa, Chem.
Rec. 2017, 17, 903–917; d) A. Burriss, A. J. F. Edmunds, D. Emery, R.
G. Hall, O. Jacob, J. Schaetzer, Pest Management Sci. 2018, 74,
1228–1238; e) B. I. Usachev, J. Fluorine Chem. 2018, 210, 6–45; f) V.
G. N. Nenajdenko, V. M. Muzalevskiy, A. V. Shastin, Chem. Rev. 2015,
115, 973–1050; g) X.-Q. Tang, C.-M. Hu, J. Chem. Soc. Perkin Trans. 1
1995, 1039–1043.
[14] a) Y. Zhao, Y. Zhou, J. Liu, L. Tao, Y. Liu, X. Dong, J. Liu, J. Qu, J. Org.
Chem. 2016, 81, 4797–4806; b) Y. Zhao, Y. Zhou, C. Zhang, H. Wang,
J. Zhao, K. Jin, J. Liu, J. Qu, Org. Biomol. Chem. 2017, 15, 5693–5700;
c) Y. Liu, Y. Zhou, Y. Zhao, J. Qu, Org. Lett. 2017, 19, 946–949; d) Y.
Zhao, Y. Zhou, C. Zhang, P. Sun, J. Li, H. Wang, J. Liu, J. Qu, J. Org.
Chem. 2018, 83, 2858–2868; e) D. Li, Y. Zhou, Y. Zhao, C. Zhang, J. Li,
J. Zhao, J. Qu, J. Fluorine Chem. 2018, 212, 122–129.
[2]
a) K. D. Rice, M. H. Kim, J. Bussenius, N. K. Anand, C. M. Blazey, O. J.
Bowles, L. Canne-Bannen, D. S.-M. Chan, B. Chen, E. W. Co, S.
Costanzo, S. C. DeFina, L. Dubenko, S. Engst, M. Franzini, P. Huang,
V. Jammalamadaka, R. G. Khoury, R. R. Klein, A. D. Laird, D. T. Le, M.
B. Mac, D. J. Matthews, D. Markby, N. Miller, J. M. Nuss, J. J. Parks, T.
H. Tsang, A. L. Tsuhako, Y. Wang, W. Xu, Bioorg. Med. Chem. Lett.
[15] A. N. Kazakova, R. O. Iakovenko, I. A. Boyarskaya, V. G. Nenajdenko,
A. V. Vasilyev, J. Org. Chem. 2015, 80, 9506–9517.
[16] T. Yamazaki, M. Ichikawa, T. Kawasaki-Takasuka, S. Yamada, J.
Fluorine Chem. 2013, 155, 151–154.
This article is protected by copyright. All rights reserved.