Journal of the American Chemical Society
Communication
and 599 m2/g, respectively. The H2 isotherm collected at 77 K
was completely reversible, and the material adsorbs a maximum
of 1.85 wt % at 77 K and 1 atm (Figure 2a), which is close to
dramatic enhancement of gas sorption if it is possible to
integrate high concentrations of open metal sites together with
open donor sites and single walls.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details, additional structural figures, powder X-ray
diffraction, thermal analysis. This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
This work was supported by the Department of Energy Office
of Basic Energy Sciences under Contract No. DE-SC0002235
(P.F.) and by NSF (X.B., DMR-0846958).
REFERENCES
(1) (a) Murray, L. J.; Dinca,
■
̆
M.; Long, J. R. Chem. Soc. Rev. 2009, 38,
1294−1314. (b) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev.
2009, 38, 1477−1504. (c) Wang, X.-S.; Ma, S.-Q.; Forster, P. M.;
́
Yuan, D.-Q.; Eckert, J.; Lopez, J. J.; Murphy, B. J.; Parise, J. B.; Zhou,
H.-C. Angew. Chem., Int. Ed. 2008, 47, 7263−7266. (d) Rowsell, J. L.
C.; Yaghi, O. M. Angew. Chem., Int. Ed. 2005, 44, 4670−4679.
(e) Wang, F.; Liu, Z.; Yang, H.; Tan, Y.; Zhang, J. Angew. Chem., Int.
Ed. 2011, 50, 450−453. (f) Huang, S.; Lin, C.; Wu, W.; Wang, S.-L.
Angew. Chem., Int. Ed. 2009, 48, 6124−6127. (g) Liao, Y.; Liao, F.;
Chang, W.; Wang, S.-L. J. Am. Chem. Soc. 2004, 126, 1320−1321.
(h) Fei, H.; Paw, U, L.; Rogow, D. L.; Bresler, M. R.; Abdollahian, Y.
A.; Oliver, S. R. J. Chem. Mater. 2010, 22, 2027−2032. (i) Fei, H.;
Rogow, D. L.; Oliver, S. R. J. J. Am. Chem. Soc. 2010, 132, 7202−7209.
(j) Rogow, D. L.; Zapeda, G.; Swanson, C. H.; Fan, X.; Campana, C.
F.; Oliver, A. G.; Oliver, S. R. J. Chem. Mater. 2007, 19, 4658−4662.
(k) Oliver, S. R. J. Chem. Soc. Rev. 2009, 38, 1868−1881.
(2) (a) Dinca,
̆
M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.;
M.;
Long, J. R. J. Am. Chem. Soc. 2006, 128, 16876−16883. (b) Dinca,
̆
Han, W. S.; Liu, Y.; Dailly, A.; Brown, C. M.; Long, J. R. Angew. Chem.,
Int. Ed. 2007, 46, 1419−1422. (c) Caskey, S. R.; Wong-Foy, A. G.;
Matzger, A. J. J. Am. Chem. Soc. 2008, 130, 10870−10871. (d) Lee,
Y.-G.; Moon, H. R.; Cheon, Y. E.; Suh, M. P. Angew. Chem., Int. Ed.
2008, 47, 7741−7745. (e) Bloch, E. D.; Britt, D.; Lee, C.; Doonan,
C. J.; Uribe-Romo, F. J.; Furukawa, H.; Long, J. R.; Yaghi, O. M. J. Am.
Chem. Soc. 2010, 132, 14382−14384.
Figure 2. (a) N2 (blue circles) and H2 (green squares) sorption
isotherms and Horvath−Kawazoe pore distribution at a highest pore
width of 4.7 Å (inset) at 77 K. (b) CO2 (magenta squares) and N2
(blue diamonds) sorption isotherms at 273 K, showing selective
adsorption of CO2 over N2. STP = standard temperature and pressure
(solid symbols, adsorption; open symbols, desorption).
(3) (a) Vaidhyanathan, R.; Iremonger, S. S.; Dawson, K. W.; Shimizu,
G. K. H. Chem. Commun. 2009, 5230−5232. (b) Panda, T.; Pachfule,
P.; Chen, Y.; Jiang, J.; Banerjee, R. Chem. Commun. 2011, 47, 2011−
2013. (c) An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132,
38−39. (d) Demessence, A.; D’Alessandro, D. M.; Foo, M. L.; Long, J.
R. J. Am. Chem. Soc. 2009, 131, 8784−8786.
(4) (a) Lin, J.-B.; Zhang, J.-P.; Chen, X.-M. J. Am. Chem. Soc. 2010,
132, 6654−6656. (b) Zhang, J.-P.; Zhu, A.-X.; Lin, R.-B.; Qi, X.-L.;
Chen, X.-M. Adv. Mater. 2011, 23, 1268−1271.
(5) (a) Farha, O. K; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.
J. Am. Chem. Soc. 2010, 132, 950−952. (b) Zheng, S.-T.; Bu, J. T.; Li,
Y.; Wu, T.; Zuo, F.; Feng, P.; Bu, X. J. Am. Chem. Soc. 2010, 132,
17062−17064. (c) Guo, Z.; Wu, H.; Srinivas, G.; Zhou, Y.; Xiang, S.;
Chen, Z.; Yang, Y.; Zhou, W.; O’keeffe, M.; Chen, B. Angew. Chem.,
Int. Ed. 2011, 50, 3178−3181.
(6) (a) Zhang, J.; Wu, T.; Zhou, C.; Chen, S.; Feng, P.; Bu, X. Angew.
Chem., Int. Ed. 2009, 48, 2542−2545. (b) Wu, T.; Zhang, J.; Zhou, C.;
Wang, L.; Bu, X.; Feng, P. J. Am. Chem. Soc. 2009, 131, 6111−6113.
(c) Zhao, X.; Wu, T.; Zheng, S.-T.; Wang, L.; Bu, X.; Feng, P. Chem.
Commun. 2011, 47, 5536−5538. (d) Volkringer, C.; Popov, D.;
́
Loiseau, T.; Guillou, N.; Ferey, G.; Haouas, M.; Taulelle, F.; Mellot-
Draznieks, C.; Burghammer, M.; Riekel, C. Nat. Mater. 2007, 6, 760−
the observation for Mn-BTT.2a A recent theoretical study
suggests that nitrogen atoms on aromatic rings can enhance the
adsorption energy of H2.13 Since such a structural feature is also
expected to enhance interactions with CO2, the CO2 isotherm
at 273 K was also measured, which shows an uptake of 98 cm3/g
at 1 atm (Figure 2b). For comparison, the N2 uptake at 273 K is
only 4.7 cm3/g at 1 atm, which leads to the calculated CO2/N2
selectivity of 20.8:1 at 273 K. The H2 and CO2 uptake capacity
of CPF-6 ranks among the high end for MOF materials. So far,
the number of materials and structure types with the CO2
uptake of more than 100 cm3/g (273 K and 1 atm) and H2
uptake of 2.0 wt % is still very limited.14
In conclusion, a single-walled 3D framework CPF-6,
containing a high concentration of tetrazolate nitrogen sites
uncoordinated to metal sites, has been synthesized. The high
percentage of open N-donor sites, together with low framework
density (due to the single wall) leads to the high uptake
capacity for H2 and CO2, even in the absence of any open metal
sites. This work points to an intriguing possibility for the
786
dx.doi.org/10.1021/ja2092882 | J. Am. Chem.Soc. 2012, 134, 784−787