Z. Zhou et al.
[4] Z. Shi, R. Franco, R. Haddad, J. A. Shelnutt, G. C. Ferreira, Bio-
[5] J. Yin, S. E. Andryski, A. E. Beuscher, R. C. Stevens, P. G. Schultz,
[7] D. E. Bikiel, F. Forti, L. Boechi, M. Nardini, F. J. Luque, M. A.
lency of the central metal will increase (contraction-type de-
formation, e.g., ruf-) or descend (expansion-type form, e.g.,
dom-). Therefore, this model can satisfactorily explain, how
the distortion of heme can regulate and stabilize its iron(II,
III, IV, or V)-containing complexes by changing the defor-
mation mode and degree of macrocyclic distortion.[9,10] That
is, when the size of the macrocyclic cavity decreases, a d
electron can leave forming a stable high-valent iron materi-
al. If the size of the cavity increases, the external electron
can return to its valent orbit, and a low-valent state of the
central ion occurs.
[9] P. Pellicena, D. S. Karow, E. M. Boon, M. A. Marletta, J. Kuriyan,
[10] C. Olea, Jr., E. M. Boon, P. Pellicena, J. Kuriyan, M. A. Marletta,
We systematically investigated the influence of macrocy-
clic deformation modes on the size of the 4-N cavity. Two
types of nonplanar porphyrins, including a ruf-type and
a dom-type, were used as model compounds, taking on typi-
cal ruffling and doming deformation modes, respectively.
The size of 4-N cavity was found to depend not only on the
degree of distortion, but also on the deformation mode of
the macrocycle. Furthermore, it was found that the 4-N
cavity size could exceed the limit value (including the mini-
mum and the maximum) of free metal ions from the fourth
period. These observations are in line with the structural
features of heme, providing a useful model for simulating its
unique properties. These findings have methodically re-
vealed the roles of the deformation mode and degree of
macrocyclic distortion in heme. Moreover, the series of non-
planar porphyrins developed could be used as ideal model
systems for exploring the characteristics of heme distortion
and optimizing the biochemical functions of metalloporphyr-
ins.
[13] C. M. Drain, C. Kirmaier, C. J. Medforth, D. J. Nurco, K. M. Smith,
[14] R. E. Haddad, S. Gazeau, J. Pꢄcaut, J. C. Marchon, C. J. Medforth,
[17] S. Neya, M. Suzuki, T. Hoshino, H. Ode, K. Imai, T. Komatsu, A.
[18] T. Shokhireva, R. E. Berry, E. Uno, C. A. Balfour, H. Zhang, F. A.
[19] J. Haggin, Chem. Eng. News 1991, 69, 23–24.
[21] E. Sigfridsson, U. Ryde, J. Biol. Inorg. Chem. 2003, 8, 273–282.
[23] E. M. Maes, S. A. Roberts, A. Weichsel, W. R. Montfort, Biochem-
[24] M. O. Senge in The Porphyrin Handbook, Vol. 1 (Eds.: K. M.
Kadish, K. M. Smith, R. Guilard), Academic Press, Boston, 2000,
p.239.
Experimental Section
[26] M. Veyrat, O. Maury, F. Faverjon, D. E. Over, R. Ramasseul, J.-C.
[28] W. M. Haynes in Handbook of Chemistry and Physics, 91st ed.,
CRC, Boca Raton, London, New York, Section 9, p. 18, and Section
12, p. 11.
Preparation of model compounds: The target materials, nonplanar por-
phyrins 1–6 were prepared according to our previous report[12] and delib-
erately characterized by MS, HRMS, NMR, UV/Vis, and X-ray methods
to access their purity (see the Supporting Information).
[29] J. A. Dean in Langeꢀs Handbook of Chemistry, 15th ed., McGraw-
Hill Book, New York, Section 4, p. 34
[30] A. M. Rich, R. S. Armstrong, P. J. Ellis, H. C. Freeman, P. A. Lay,
Acknowledgements
[31] W. Gong, B. Hao, S. S. Mansy, G. Gonzalez, M. A. Gilles-Gonzalez,
[32] S. A. Roberts, A. Weichsel, Y. Qiu, J. A. Shelnutt, F. A. Walker,
[33] C. J. Medforth, R. E. Haddad, C. M. Muzzi, N. R. Dooley, L. Jaqui-
nod, D. C. Shyr, D. J. Nurco, M. M. Olmstead, K. M. Smith, J.-G.
This work was supported by the National Natural Science Foundation of
China (21071051), the Key Project of Chinese Ministry of Education
(No. 211121), the Scientific Research Fund of Hunan Provincial Educa-
tion Department (10B031), and Prof. Jianyu Zheng of Nankai University.
Keywords: biomimetic synthesis
·
heme proteins
·
macrocycles · metalloenzymes · porphyrinoids
[35] T. Picaud, C. Le Moigne, B. Loock, M. Momenteau, A. Desbois, J.
[36] B. Morgan, D. Dolphin, R. H. Jones, T. Jones, F. W. B. Einstein, J.
[1] J. A. Shelnutt, X.-Z. Song, J.-G. Ma, S.-L. Jia, W. Jentzen, C. J. Med-
forth, Chem. Soc. Rev. 1998, 27, 31–41.
[37] Y. J. Song, R. E. Haddad, S. L. Jia, S. Hok, M. M. Olmstead, D. J.
Nurco, N. E. Schore, J. Zhang, J. G. Ma, K. M. Smith, S. Gazeau, J.
Pꢄcaut, J. C. Marchon, C. J. Medforth, J. A. Shelnutt, J. Am. Chem.
[3] J. Pang, X. Li, K. Morokuma, N. S. Scrutton, M. J. Sutcliffe, J. Am.
7678
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2012, 18, 7675 – 7679