Full Paper
˘
Normant, J. P. Foulon, D. Masure, R. Sauvetre, J. Villieras, Synthesis 1975,
122–125; l) A. Ren, X. Yang, J. Hong, X. Yu, Synlett 2008, 15, 2376–
2378.
[17] The proposed a-deprotonation of N-alkyl groups in nitrones can be in-
ferred by the high acidity of the a-proton on N-alkyl groups in imines,
a) M. J. O’Donnell, W. D. Bennett, W. A. Bruder, W. N. Jacobsen, K. Knuth,
B. LeClef, R. L. Polt, F. G. Bordwell, S. R. Mrozack, T. A. Cripe, J. Am. Chem.
Soc. 1998, 120, 8520–8525; this hypothesis can also be partially sup-
ported by the observed Brehrend rearrangement of ketonitrones to al-
[18] Stamm et al. have previously reported a similar Reformatsky-type reac-
tion between nitrones and a-bromoacetates to form 5-isoxazolidinones,
see 12[b].
[19] It has been reported that the N-tert-butyl group and other N-tertiary
substitutes can be selectively removed in the presence of triflic acid,
which allows further transformations of isoxazolidinones; a) S. Knapp,
7085–7091; h) B. Zajc, R. Kumar, Synthesis 2010, 11, 1822–1836; i) L.
Int. Ed. 2009, 48, 9858–9861; k) Y. Zhao, W. Huang, L. Zhu, J. Hu, Org.
n) G. K. S. Prakash, S. Chacko, H. Vaghoo, N. Shao, L. Gurung, T. Mathew,
[20] Nitrosobenzene has been known to readily undergo oxidation in the
[21] For superacid-induced ring-opening of fluorinated 1,2-oxazetidines, see
[22] For pyrolysis of fluorinated 1,2-oxazetidines at 5508C, see D. A. Barr,
[23] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Men-
nucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Ko-
bayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyen-
gar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,
K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg,
S. Dapprich, A. D. Daniels, ꢆ. Farkas, J. B. Foresman, J. V. Ortiz, J. Cio-
slowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[7] D. A. Alonso, M. Fuensanta, E. Gꢄmez-Bengoa, G. Nꢅjera, Adv. Synth.
[8] Pioneering work using nitrones in olefin synthesis, see, a) V. Capriati, L.
[10] Oxamate bio a) J. H. Sellstedt, C. J. Guinosso, A. J. Begany, S. C. Bell, M.
Clark, J. F. Djung, A. Golebiowski, T. A. Brugel, M. Sabat, R. G. Bookland,
M. J. Laufersweiler, J. C. VanRens, J. A. Townes, B. De, L. C. Hsieh, S. C.
ˇ
[25] a) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117–129; b) G.
[26] Selected computational studies on nitrone–olefin and nitrone–enolate
[3+2]cycloaddition reactions, see a) E. H. Krenske, K. N. Houk, A. B.
Krenske, S. Agopcan, V. Aviyente, K. N. Houk, B. A. Johnson, A. B.
[27] CCDC-958856 (5a), 958855 (6a), and 958850 (7e) contain the supple-
mentary crystallographic data for this paper. These data can be ob-
tained free of charge from The Cambridge Crystallographic Data Centre
[11] Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis 2nd Ed.
(Ed.: H. Feuer), Wiley, Hoboken, 2008, 129–434.
1 1999, 681–686; e) P. Merino, S. Franco, J. A. Mates, F. L. Merchan, P.
Romero, T. Tejero, S. Uriel, R. Matute, Arkivoc 2004, 48–58; f) A. Diez-
Phys. Chem. 1967, 71, 1161–1163.
[13] For discussions on the instability of a-fluorocarbanions, a) H. G. Adolph,
Wang, N. Shao, T. Mathew, G. Rasul, R. Haiges, T. Stewart, G. A. Olah,
5358–5362; c) C. Ni, J. Hu, Synlett 2011, 770–782.
[14] HMPA has been widely utilized in organolithium chemistry to enhance
the reactivity of organolithium reagents. Robert R. Dykstra, Hexamethyl-
phosphoric Triamide, in D. Crich, A. B. Charette, P. L. Fuchs, G. Molander,
Eds., e-EROS Encyclopedia of Reagents for Organic Synthesis: Wiley, DOI:
10.1002/047084289X.rh020.
[29] C. D. Ritchie, W. F. Sager, Prog. Phys. Org. Chem. 1964, 2, 323–400.
[30] a) E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry; Uni-
versity Science Books, 2006, 455; b) S. H. Unger, C. Hansch, Prog. Phys.
Org. Chem. 1976, 12, 91–118.
[31] Charton’s parameters describe the steric effects of substituents based
Received: September 5, 2013
Published online on December 11, 2013
Chem. Eur. J. 2014, 20, 831 – 838
838
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim