´
5147
T. G. Kraljevic et al. / Tetrahedron Letters 53 (2012) 5144–5147
4. (a) Patil, V. D.; Wise, D. S.; Townsend, L. B.; Bloch, A. J. Med. Chem. 1974, 17,
1282–1285; (b) Patil, V. D.; Wise, D. S.; Wotring, L. L.; Bloomer, L. C.; Townsend,
L. B. J. Med. Chem. 1985, 28, 423–427; (c) Kifli, N.; De Clercq, E.; Balzarini, J.;
Simons, C. Bioorg. Med. Chem. 2004, 12, 4245–4252; (d) Amblard, F.; Aucagne,
V.; Guenot, P.; Schinazi, R. F.; Agrofoglio, L. A. Bioorg. Med. Chem. 2005, 13,
1239–1248.
5. (a) Miyazaki, Y.; Matsunaga, S.; Tang, J.; Maeda, Y.; Nakano, M.; Philippe, R. J.;
Shibahara, M.; Liu, W.; Sato, H.; Wang, L.; Nolte, R. T. Bioorg. Med. Chem. Lett.
2005, 15, 2203–2207; (b) Janeba, Z.; Balzarini, J.; Andrei, G.; Snoeck, R.; De
Clercq, E.; Robins, M. J. J. Med. Chem. 2005, 48, 4690–4696; (c) Foloppe, N.;
Fisher, L. M.; Howes, R.; Kierstan, P.; Potter, A.; Robertson, A. G. S.; Surgenor, A.
malignant tumour cell lines: cervical carcinoma (HeLa), breast epi-
thelial adenocarcinoma, metastatic (MCF-7), hepatocellular carci-
noma (HepG2), colorectal adenocarcinoma (SW620), pancreatic
carcinoma (MiaPaCa-2) and normal human fibroblasts (WI38).
However, the results indicated that the evaluated compounds did
not significantly inhibit any of the tested malignant tumour cell
lines.
In conclusion, we have described an efficient, experimentally
simple and attractive one-pot syntheses of 5-alkynylated pyrimi-
dines 1–10a and furo[2,3-d]pyrimidine derivatives 1–6b via a
Sonogashira cross-coupling/heteroannulation approach under
conventional and microwave conditions. While conventional syn-
thesis provided 5-alkynylpyrimidines 1–10a as the major products,
synthesis under microwave irradiation afforded bicyclic products
1–6b in considerably increased yields. We found that pyrimidine
derivatives with alkynyl side chains at C5, 1–6a, underwent smooth
base-promoted 5-endo-dig cyclisation during methoxymethylation
reactions leading to good yields of furo[2,3-d]pyrimidines 11–16.
However, pyrimidine derivatives bearing (p-alkylaryl)acetylenes
at C5 did not undergo the O-heteroannulation, thus affording N-1-
MOM 17–20a and N,N-1,3-diMOM 17–20b 5-[(p-alkylaryl)ethy-
nyl]pyrimidine derivatives. We believe this is the first report of an
alternative procedure for the synthesis of N-alkylated 5-alkynyl-
and furo[2,3-d]pyrimidine derivatives promoted by K2CO3. Further-
more, this synthetic procedure is potentially suitable for the
preparation of a variety of N-alkylated heterocyclic structural ana-
logues that could be developed as potential biologically active
compounds.
ˇ
´
E. J. Med. Chem. 2005, 48, 4332–4345; (d) Gazivoda, T.; Šokcevic, M.; Kralj, M.;
Šuman, L.; Pavelic´, K.; De Clercq, E.; Andrei, G.; Snoeck, R.; Balzarini, J.; Mintas,
´
´
M.; Raic-Malic, S. J. Med. Chem. 2007, 50, 4105–4112; (e) McGuigan, C.;
Balzarini, J. J. Antimicrob. Chemother. 2009, 64, 671–673.
6. (a) Kabalka, G. W.; Wang, L.; Pagni, R. M. Tetrahedron 2001, 57, 8017–8028; (b)
Sørensen, U. S.; Pombo-Villar, E. Tetrahedron 2005, 61, 2697–2703; (c) Chen, Y.;
Markina, N. A.; Larock, R. C. Tetrahedron 2009, 65, 8908–8915.
7. (a) Cacchi, S. J. Organomet. Chem. 1999, 576, 42–64; (b) Rao, M. S.; Esho, N.;
Sergeant, C.; Dembinski, R. J. Org. Chem. 2003, 17, 6788–6790; (c) Palimkar, S.
S.; Kumar, P. H.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron 2006, 62, 5109–5115;
(d) Harkat, H.; Weibl, J. M.; Pale, P. Tetrahedron Lett. 2007, 48, 1439–1442; (e)
Palimkar, S. S.; More, V. S.; Kumar, P. H.; Srinivasan, K. V. Tetrahedron 2007, 63,
12786–12790; (f) Liu, Z.; Li, D.; Li, S.; Bai, D.; He, X.; Hu, Y. Tetrahedron 2007, 63,
1931–1936; (g) Heravi, M. M.; Sadjadi, S. Tetrahedron 2009, 65, 7761–7775.
8. (a) Hiroya, K.; Jouka, R.; Kameda, M.; Yasuhara, A.; Sakamoto, T. Tetrahedron
2001, 57, 9697–9710; (b) Motto, J. M.; Castillo, Á.; Greer, A.; Montemayer, L. K.;
Sheepwash, E. E.; Schwan, A. L. Tetrahedron 2011, 67, 1002–1010; (c) Chen, P.-
Y.; Wang, T.-P.; Huang, K.-S.; Kao, C.-L.; Tsai, J.-C.; Wang, E.-C. Tetrahedron
2011, 67, 9291–9297.
9. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 44, 4467–
4470; (b) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46–49; (c) Agrofoglio,
L. A.; Gillaizeau, I.; Saito, Y. Chem. Rev. 2003, 103, 1875–1916; (d) Sonogashira,
K. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Demeijere, A., Eds.;
Wiley-VCH: Weinheim, 2004; Vol. 1, p p.319; (e) Alonso, F.; Beletskaya, I. P.;
Yus, M. Chem. Rev. 2004, 104, 3079–3159; (f) Chinchilla, R.; Nájera, C. Chem.
Rev. 2007, 107, 874–922.
10. General procedure for the preparation of 1–10a and 1–6b. To a solution of 5-
iodopyrimidine (0.84 mmol) in anhydrous DMF (7 mL) were added the
terminal alkyne (2.5 mmol), Pd(PPh3)4 (0.08 mmol), CuI (0.08 mmol) and
Et3N [or (iPr)2EtN] (1.68 mmol). Method A: The reaction mixture was stirred
at room temperature overnight. The extent of the reaction was monitored by
TLC and the solvent was evaporated in vacuo and the residue purified by
column chromatography (initial eluent CH2Cl2, then CH2Cl2/MeOH = 40:1) to
afford 1–10a and 1–6b. Method B: The synthesis was carried out at 50 °C for
Acknowledgements
Support of this study by the Ministry of Science, Education and
Sports of the Republic of Croatia (projects #125-0982464-2925
and #335-0000000-3532) is gratefully acknowledged.
30 min under microwave irradiation (300 W, 1 bar, Milestone start
S
microwave oven). Purification by column chromatography (initial eluent
CH2Cl2, then CH2Cl2/MeOH = 40:1) afforded compounds 1–10a and 1–6b.
11. (a) Su, T.-L.; Huang, J.-T.; Burchenal, J. H.; Watanabe, K. A.; Fox, J. J. J. Med. Chem.
1986, 29, 709–715; (b) Edstrom, E. D.; Feng, X.; Tumkevicius, S. Tetrahedron
Lett. 1996, 37, 759–762; (c) Heintzelman, G. R.; Fang, W.-K.; Keen, S. P.;
Wallace, G. A.; Weinreb, S. M. J. Am. Chem. Soc. 2001, 123, 8851–8853; (d)
Muschalek, B.; Weidner, I.; Butenschön, H. J. Organomet. Chem. 2007, 692,
2415–2424; (e) Zhang, F.; Kulesza, A.; Rani, S.; Bernet, B.; Vasella, A. Helv. Chim.
Supplementary data
Supplementary data (1H and 13C NMR, mass spectrometry and
elemental analysis data of compounds 1–20, synthesis and exper-
imental procedures of compounds 21–25) associated with this arti-
´
´
Acta 2008, 91, 1201–1218; (f) Kraljevic, Gazivoda.; Petrovic, T.; Krištafor, M.;
Makuc, S.; Plavec, J.; Ross, L. T.; Ametamey, S. M; Raic´-Malic´, S. Molecules 2011,
16, 5113–5129; (g) Gazivoda .Kraljevic´, T.; Klika, M.; Kralj, M.; Martin-Kleiner,
I.; Jurmanovic´, S.; Milic´, A.; Padovan, J.; Raic´-Malic´, S. Bioorg. Med. Chem. Lett.
2012, 22, 308–312.
References and notes
12. Method C: a solution of 5-alkynylpyrimidine derivative 1–10a (0.4 mmol) and
K2CO3 (1 mmol) in anhydrous DMF (5 mL) was cooled to 0 °C, and after 10 min,
methoxymethyl chloride (MOMCl) (1.2 mmol) was added. The obtained
mixture was additionally stirred at room temperature overnight and the
solvent was then evaporated. Purification by column chromatography (CH2Cl2/
MeOH = 40:1) afforded compounds 11–20. Method D: a solution of furo[2,3-
d]pyrimidine derivative 1–6b (0.08 mmol) and K2CO3 (0.16 mmol) in
anhydrous DMF (1 mL) was cooled to 0 °C, and after 10 min, MOMCl
(0.16 mmol) was added. The obtained mixture was additionally stirred at
room temperature overnight and the solvent was then evaporated. Further
purification by column chromatography (CH2Cl2/MeOH = 40:1) afforded 11–
16.
1. (a) Girreser, U.; Heber, D.; Schütt, M. Tetrahedron 2004, 60, 11511–11517; (b)
Peng, Z.-H.; Journet, M.; Humphrey, G. Org. Lett. 2006, 18, 395–398; (c)
Braendvang, M.; Gundersen, L. L. Tetrahedron Lett. 2007, 48, 3057–3059; (d)
Choudhury, A.; Chen, H.; Nilsen, C. N.; Sorgi, K. L. Tetrahedron Lett. 2008, 49,
102–105; (e) Mishra, R.; Tomar, I. Int. J. Pharm. Sci. Res. 2011, 2, 758–771.
2. (a) Heidelberger, C. In Cancer Medicine; Holland, J. F., Frei, E., Eds.; Lea and
Febiger: Philadelphia, 1984; pp 801–824; (b) Sigmond, J.; Peters, G. J.
Nucleosides Nucleotides Nucleic Acids 2005, 24, 1997–2022; (c) Ibrahim, D. A.;
El-Metwally, A. M. Eur. J. Med. Chem. 2010, 45, 1158–1166.
3. (a) Bères, J.; Bentrude, W. G.; Balzarini, J.; De Clercq, E.; Otvös, L. J. Med. Chem.
1986, 29, 494–499; (b) Herdewijn, P. Antiviral Chem. Chemother. 1994, 5, 131–
146; (c) Fillastre, J. P.; Godin, M.; Legallicier, B.; Chretien, P.; Bidault, R.;
Gillotin, C.; Wooton, R.; Posner, J.; Peck, R. W. J. Antimicrob. Chemother. 1996, 37,
965–974.