ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis of Optically Active
4‑Substituted 2‑Cyclohexenones
Tania I. Houjeiry,† Sarah L. Poe,‡ and David T. McQuade*,†
Department of Chemistry and Biochemistry, Florida State University, Tallahassee,
Florida 32306, United States, and Department of Chemistry and Chemical Biology,
Cornell University, Ithaca, New York 14853, United States
Received July 8, 2012
ABSTRACT
Recently, Nicolaou and Baran independently synthesized optically active 4-substituted 2-cyclohexenones via an efficient LiOH-mediated
intramolecular aldol condensation. Thus far, application of their cyclization approach has been limited to ketoaldehydes where the R-group is
branched. It is demonstrated that the LiOH-mediated cyclization, when applied to substrates containing unbranched R-groups, results in
significant erosion of optical purity. A mechanistic justification is provided, and a set of neutral, organocatalyzed conditions is identified that
enables cyclization with little loss in optical purity.
Optically active 4-substituted-2-cyclohexenones are
both natural products and intermediates for the synthesis
of complex molecules. An example is (R)-cryptone, an
essential oil of Eucalyptus cneorifolia, that is used as a
starting material for the synthesis of dihydrojunenol,
faurinone, β-cadinene, and other natural products.1,2
Asymmetric routes into 4-substituted 2-cyclohexenones
including cryptone have been relatively limited considering
their wide use, although notable examples do exist.3 For
example, Koga et al. used optically active bases to depro-
tonate prochiral cyclohexanones followed by isomerizat-
ion of the silyl enol ether to provide optically active
cyclohexenones.4 Later, Fuchs et al. introduced a multistep
process starting with enantiopure epoxyvinyl sulfones5 and
Eloi et al. recently reported an approach using stoichiometric
† Florida State University.
‡ Cornell University.
(1) For cryptone in synthesis: (a) Chen, K.; Ishihara, Y.; Galan,
ꢀ
M. M.; Baran, P. S. Tetrahedron 2010, 66, 4738. (b) Findley, T.; Sucunza,
D.; Miller, L.; Davies, D.; Procter, D. Chem.;Eur. J. 2008, 14, 6862.
(c) Fringuelli, F.; Pizzo, F.; Taticchi, A.; Ferreira, V.; Michelotti, E.;
Porter, B.; Wenkert, E. J. Org. Chem. 1985, 50, 890. (d) Becker, J.;
(3) (a) Elliot, M. L.; Urban, F. J. J. Org. Chem. 1985, 50, 1752.
(b) Itagaki, N.; Kimura, M.; Sugahara, T.; Iwabuchi, Y. Org. Lett. 2005,
7, 4185. (c) Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, H.;
Terrel, R. J. Am. Chem. Soc. 1963, 85, 207. (d) Rawal, V. H.; Kozmin,
S. A. J. Am. Chem. Soc. 1999, 121, 9562. (e) Asaoka, M.; Aida, T.;
Sonoda, S.; Takei, H. Tetrahedron Lett. 1989, 30, 7075.
(4) (a) Aoki, K.; Nakajima, M.; Tomioka, K.; Koga, K. Chem.
Pharm. Bull. 1993, 41, 994. (b) Shirai, R.; Tanaka, M.; Koga, K.
J. Am. Chem. Soc. 1986, 108, 543.
(5) Evarts, J.; Torres, E.; Fuchs, P. L. J. Am. Chem. Soc. 2002, 124,
11093.
(6) Eloi, A.; Rose-Munch, F.; Rose, E.; Pille, A.; Lesot, P.; Herson, P.
Organometallics 2010, 29, 3876.
€
Bergander, K.; Frohlich, R.; Hoppe, D. Angew. Chem., Int. Ed. 2008, 47,
1654. (e) Ley, S. V.; Dixon, D. J.; Rodrıguez, F.; Sheppard, T. D. Org.
´
Biomol. Chem. 2005, 3, 4095. (f) Mori, K. Tetrahedron: Asymmetry 2006,
17, 2133.
(2) (a) ApSimon, J. A., Ed. The Total Synthesis of Natural Products;
John Wiley & Sons: New York, 1973; Vol. 2. (b) Stevens, R. V.; Albizati,
K. F. J. Org. Chem. 1985, 50, 632. (c) Mizutani, R.; Nakashima, K.;
Saito, Y.; Sono, M.; Tori, M. Tetrahedron Lett. 2009, 50, 2225.
(d) Edwards, M.; Kenworthy, M. N.; Kitson, R. R. A.; Perry, A.; Scott,
M. S.; Whitwood, A. C.; Taylor, R. J. K. Eur. J. Org. Chem. 2008, 4769.
(e) Ishigami, K. Biosci. Biotechnol. Biochem. 2009, 73, 971.
r
10.1021/ol301874x
XXXX American Chemical Society