980
K. Y. Lee et al. / Tetrahedron Letters 47 (2006) 977–980
Compound 4c: 70% (trans/cis = 3:1); clear oil; 1H NMR
1H); 13C NMR (CDCl3, 75 MHz) d 14.36, 21.19, 61.07,
126.03, 126.08, 126.37, 127.22, 128.14, 129.03, 129.68,
129.85, 130.24, 133.02, 133.84, 137.06, 137.24, 140.58,
166.73; ESIMS m/z 291.1 (M++H).
(CDCl3, 300 MHz, trans-isomer) d 2.32 (s, 3H), 3.66 (dd,
J = 4.8 and 1.2 Hz, 1H), 3.89 (s, 3H), 5.08 (d, J = 4.8 Hz,
1H), 6.92–7.42 (m, 11H), 7.83 (d, J = 8.1 Hz, 2H), 8.00 (s,
1H); 1H NMR (CDCl3, 300 MHz, cis-isomer) d 2.38 (s,
3H), 3.56 (s, 3H), 4.35 (dd, J = 6.6 and 1.5 Hz, 1H), 4.44 (d,
J = 6.6 Hz, 1H), 6.92–7.42 (m, 11H), 7.54 (d, J = 1.5 Hz,
1H), 7.77 (d, J = 8.4 Hz, 2H).
Compound 5c: 81%; yellow solid, mp 139–140 °C; IR (KBr)
1720, 1242 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 3.97 (s,
;
3H), 7.34–7.43 (m, 3H), 7.50–7.58 (m, 4H), 7.98–8.03 (m,
2H), 8.67 (d, J = 1.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz)
d 52.25, 125.91, 126.37, 126.63, 128.71, 126.80, 128.51,
129.26, 129.58, 129.73, 131.22, 131.97, 132.62, 133.80,
133.97, 137.85, 138.50, 167.04; ESIMS m/z 297.1 (M++H).
Compound 5d: 80%; yellow solid, mp 89–90 °C; IR (KBr)
Compound 4d: 63% (cis only); clear oil; IR (KBr) 1716,
1331, 1265, 1161 cmꢀ1 1H NMR (CDCl3, 300 MHz, cis-
;
isomer) d 2.16 (s, 3H), 2.34 (s, 3H), 2.38 (s, 3H), 3.46 (s,
3H), 3.99 (d, J = 6.6 Hz, 1H), 4.22 (dd, J = 6.6 and 1.8 Hz,
1H), 6.55 (d, J = 8.1 Hz, 2H), 6.71 (d, J = 8.1 Hz, 2H), 6.99
(d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 7.27 (d,
J = 8.1 Hz, 2H), 7.44 (d, J = 1.8 Hz, 1H), 7.82 (d,
J = 8.1 Hz, 2H).
1720, 1242 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 2.45 (s,
;
3H), 2.46 (s, 3H), 3.96 (s, 3H), 7.29–7.40 (m, 5H), 7.69 (s,
1H), 7.89 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 1.8 Hz, 1H), 8.54
(s, 1H); 13C NMR (CDCl3, 75 MHz) d 21.23, 22.11, 52.13,
125.02, 125.98, 126.23, 128.70, 129.04, 129.56, 129.83,
130.14, 131.24, 134.06, 137.15, 137.19, 138.48, 139.90,
167.35; ESIMS m/z 291.1 (M++H).
Compound 4e: 63% (trans/cis = 1:5); clear oil; 1H NMR
(CDCl3, 300 MHz, trans-isomer) d 2.31 (s, 3H), 2.36 (s,
3H), 3.62 (dd, J = 5.1 and 1.2 Hz, 1H), 3.85 (s, 3H), 4.43 (d,
J = 5.1 Hz, 1H), 7.00–7.43 (m, 10H), 7.78 (d, J = 8.4 Hz,
Compound 5e: 83%; yellow solid, mp 94–95 °C; IR (KBr)
1
2H), 7.88 (s, 1H); H NMR (CDCl3, 300 MHz, cis-isomer)
1724, 1246 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 2.47 (s,
;
d 2.20 (s, 3H), 2.40 (s, 3H), 3.52 (s, 3H), 3.96 (d, J = 6.9 Hz,
1H), 4.19 (dd, J = 6.9 and 1.8 Hz, 1H), 6.55 (d, J = 8.1 Hz,
2H), 6.77 (d, J = 8.1 Hz, 2H), 7.00–7.32 (m, 6H), 7.45 (d,
J = 1.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H); 13C NMR
(CDCl3, 75 MHz, cis-isomer) d 21.03, 21.60, 44.29, 46.61,
51.87, 124.30, 126.36, 127.05, 127.99, 128.02, 128.13,
129.54, 130.68, 132.39, 134.83, 135.28, 137.28, 142.32,
144.43, 167.12.
3H), 3.97 (s, 3H), 7.32 (d, J = 8.4 Hz, 2H), 7.36 (d,
J = 8.4 Hz, 2H), 7.48 (dd, J = 8.7 and 2.1 Hz, 1H), 7.91
(s, 1H), 7.93 (d, J = 8.7 Hz, 1H), 8.02 (d, J = 2.1 Hz, 1H),
8.55 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 21.24, 52.31,
125.10, 127.09, 127.18, 127.49, 129.27, 129.72, 129.99,
131.19, 131.28, 134.52, 134.56, 136.28, 137.65, 140.03,
166.90; ESIMS m/z 311.1 (M++H).
Compound 5f: 79%; yellow solid, mp 123–124 °C; IR (KBr)
Compound 4f: 68% (cis-only); clear oil; IR (KBr) 1716,
1720, 1254 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 2.44 (s,
;
1331, 1250, 1161 cmꢀ1
;
1H NMR (CDCl3, 300 MHz, cis-
3H), 3.97 (s, 3H), 4.03 (s, 3H), 6.85 (dd, J = 7.2 and 1.2 Hz,
1H), 7.27–7.50 (m, 6H), 8.01 (d, J = 1.2 Hz, 1H), 9.04 (s,
1H); 13C NMR (CDCl3, 75 MHz) d 21.20, 52.12, 55.64,
104.26, 118.25, 124.49, 125.27, 126.02, 126.74, 128.41,
128.95, 129.85, 134.96, 137.13, 137.35, 140.21, 156.58,
167.39; ESIMS m/z 307.1 (M++H).
isomer) d 2.18 (s, 3H), 2.36 (s, 3H), 3.47 (s, 3H), 3.51 (s, 3H),
3.86 (d, J = 6.9 Hz, 1H), 4.18 (dd, J = 6.9 and 1.8 Hz, 1H),
6.50–7.26 (m, 10H), 7.68 (d, J = 1.8 Hz, 1H), 7.80 (d,
J = 8.1 Hz, 2H).
Compound 5a: 85%; yellow solid, mp 95–96 °C; IR (KBr)
1720, 1246 cmꢀ1
;
1H NMR (CDCl3, 300 MHz) d 2.45 (s,
7. As reported the cis/trans ratios of the diastereoisomers were
much different depending upon the structure of the
substrates.5 We obtained cis-isomers exclusively for the
cases of 4d and 4f. However, cis/trans mixtures were
obtained for 4a–c and 4e in a variable ratios.6 In Figure 2
we show the NOE data of pure cis-4e as an example.
8. During the evaluation process of this paper, one of the
reviewers suggested the synthesis of naphthalenes from the
reaction of N-aryl(or N-alkyl)aziridine of Baylis–Hillman
adducts instead of 4a–f. However, the preparation of N-
phenylaziridine derivative from the reaction of 2a and
benzaldehyde N-phenylimine failed as reported in Ref. 5a.
3H), 3.97 (s, 3H), 7.29 (d, J = 8.1 Hz, 2H), 7.38 (d,
J = 8.1 Hz, 2H), 7.50–7.54 (m, 2H), 7.92–7.99 (m, 2H),
8.00 (d, J = 1.8 Hz, 1H), 8.59 (s, 1H); 13C NMR (CDCl3,
75 MHz) d 21.21, 52.20, 126.03, 126.11, 126.43, 126.87,
128.23, 129.04, 129.71, 129.85, 130.33, 133.02, 133.88,
136.99, 137.27, 140.67, 167.23; ESIMS m/z 277.1 (M++H).
Compound 5b: 84%; yellow solid, mp 96–97 °C; IR (KBr)
1716, 1242 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 1.43 (t,
;
J = 6.9 Hz, 3H), 2.45 (s, 3H), 4.43 (q, J = 6.9 Hz, 2H), 7.30
(d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.47–7.55 (m,
2H), 7.91–8.00 (m, 2H), 8.01 (d, J = 1.8 Hz, 1H), 8.60 (s,