P. Wu et al. / Tetrahedron Letters 53 (2012) 4673–4675
4675
Table 2
Reaction scopea
R1
R2
10 mol% Pd(OAc)2
20 mol% PPh3
R1
2
R2
1
I
O
COR3
+
R3
5 (2.5 equiv)
2 equiv Na2CO3
2 equiv. Bu4NBr
N
NHTs
Ts
3
Entry
3 (R1, R2)
5 (R3)
4
Yieldb (%)
1
2
3
4
5
6
7
3a (Ph, H)
3b (Bu, H)
3c (Et, Bu)
3d (Ph, Ph)
3e (Et, Ph)
3a (Ph, H)
3a (Ph, H)
5a (OtBU)
5a (OtBU)
5a (OtBU)
5a (OtBU)
5a (OtBU)
5b (OMe)
5c (Ph)
4aa
4ba
4ca
4da
4ea
4ab
4ac
65
50
ND
51
70
54 (71)c
43
Ph
O
8
43
40
N(OMe)Me
N
4ad
Ts
Ph
O
9
N
O
N
4ae
Ts
a
Reaction conditions see Supplementary data.
Isolated yield.
The data in parentheses was obtained with the use of 5.0 equiv 5b.
b
c
Tandem Organic Reactions; Wiley: New York, 1992; (c) Tietze, L. F. Chem. Rev.
1996, 96, 115; (d) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993.
2. For representative examples: (a) Fustero, S.; Jiménez, D.; Sánchez-Roselló, M.;
del Pozo, C. J. Am. Chem. Soc. 2007, 129, 6700; (b) Bi, H.-P.; Liu, X.-Y.; Gou, F.-R.;
Guo, L.-N.; Duan, X.-H.; Shu, X.-Z.; Liang, Y.-M. Angew. Chem., Int. Ed. 2007, 46,
7068; (c) Gai, X.; Grigg, R.; Khamnaen, T.; Rajviroongit, S.; Sridharan, V.; Zhang,
L.; Collard, S.; Keep, A. Tetrahedron Lett. 2003, 44, 7441; (d) Zeng, Y.; Reddy, D. S.;
Hirt, E.; Aubé, J. Org. Lett. 2004, 6, 4993; (e) Kirschbaum, S.; Waldmann, H.
Tetrahedron Lett. 1997, 38, 2829.
3. (a) Dyker, G.; Grundt, P. Tetrahedron Lett. 1996, 37, 619; (b) Rolfe, A.; Young, K.;
Hanson, P. R. Eur. J. Org. Chem. 2008, 5254; (c) Khan, M. W.; Masud Reza, A. F. G.
Tetrahedron 2005, 61, 11204; (d) Barr, N.; Bartley, J. P.; Clark, P. W.; Dyke, P.;
Dunstan, S. F. J. Organomet. Chem. 1986, 302, 117; (e) Rolfe, A.; Young, K.; Volp,
K.; Schoenen, F.; Neuenswander, B.; Lushington, G. H.; Hanson, P. R. J. Comb.
Chem. 2009, 11, 732.
Ha
Ph
1 equiv I2
Ph
I
3 equiv NaHCO3
HCO2H
rt
CO2H
HO
4aa
4aa
O
6 equiv NaI
H2O, rt, in dark
N
Ts
TsN
CO
6
8
80% overall yield
Hb
Ph
O
Ph
Br
1.4 equiv. NBS
acetone, 0oC
LiAlH4
THF, rt
N
Ts
TsN
9
7
4. (a) Liu, H.; Li, C.; Qiu, D.; Tong, X. J. Am. Chem. Soc. 2011, 133, 6187; (b) Liu, H.;
Wang, L.; Tong, X. Chem. Commun. 2011, 47, 12206.
70% overall yield
5. The detail for synthesis of compounds 3 please see the Supplementary data.
6. (a) Jeffery, T. J. Chem. Soc., Chem. Commun. 1984, 1287; (b) Larock, R. C.; Leung,
W.-Y.; Stolz-Dunn, S. Tetrahedron Lett. 1989, 30, 6629; (c) Larock, R. C.; Yum, E.
K.; Yang, H. Tetrahedron 1994, 50, 305; (d) Basavaiah, D.; Muthukumaran, K.
Tetrahedron 1998, 54, 4943.
Scheme 3. Synthetic transformation.
Supplementary data
7. Martin, S. F.; Dappen, M. S.; Dupre, B.; Murphy, C. J.; Colapret, J. A. J. Org. Chem.
1989, 54, 2209.
8. Rico, R.; Zapico, J.; Bermejo, F.; Bamidele Sanni, S.; García-Granda, S.
Tetrahedron: Asymmetry 1998, 9, 293.
Supplementary data associated with this article can be found, in
9. The structural determination of compounds 8 and 9 is based on the following
considerations: in the 1H NMR spectra of 8 and 9, the corresponding peaks of Ha
and Hb are singlet. If they are [3,3,0]-bicyclic system, the peaks of Ha and Hb
should be doublet. For similar [3,3,0]bicyclic compound see: Ranieri, B.; Curti,
C.; Battistini, L.; Sartori, A.; Pinna, L.; Casiraghi, G. Zanardi, F. J. Org. Chem. 2011,
76, 10291.
References and notes
1. For selected reviews, see: (a) Tietze, L. F.; Brasche, G.; Gericke, K. M. Domino
Reactions in Organic Chemistry; Wiley-VCH: Weinheim, 2006; (b) Ho, T.-L.