Journal of the American Chemical Society
Communication
Notes
Scheme 4. Energy Differences between the Two Conformers
of UDP-D-xylose
a
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. Mikio Fuji for his contributions to the initial
synthetic efforts. This work was supported by grants from the
National Institutes of Health (GM035906 and GM054346) and
the Welch Foundation (F-1511).
REFERENCES
■
(1) (a) Ishii, T.; Matsunaga, T.; Pellerin, P.; O’Neill, M. A.; Darvill,
A.; Albersheim, P. J. Biol. Chem. 1999, 274, 13098. (b) O’Neill, M. A.;
Ishii, T.; Albersheim, P.; Darvill, A. G. Annu. Rev. Plant Biol. 2004, 55,
109. (c) Beck, E. Z. Pflanzenphysiol. 1967, 57, 444. (d) Longland, J. M.;
Fry, S. C.; Trewavas, A. J. Plant Physiol. 1989, 90, 972.
(2) O’Neill, M. A.; Eberhard, S.; Albersheim, P.; Darvill, A. G. Science
2001, 294, 846.
(3) (a) Picken, J. M.; Mendicino, J. J. Biol. Chem. 1967, 242, 1629.
(b) Mendicino, J. Biochim. Biophys. Acta 1974, 364, 159. (c) Pan, Y. T.;
Kindel, P. K. Arch. Biochem. Biophys. 1977, 181, 131.
a
The less stable conformer, 7, can bind productively and be converted
to UDP-D-apiose, while the more stable conformation, 33, forms a
dead-end complex. The inset shows an overlay of 33 (green) and 2
(gray).
(4) Choi, S.-h.; Ruszczycky, M. W.; Zhang, H.; Liu, H.-w. Chem.
Commun. 2011, 47, 10130.
(5) (a) Baron, D.; Wellmann, E.; Grisebach, F. Biochim. Biophys. Acta
1972, 258, 310. (b) Baron, D.; Grisebach, F. Eur. J. Biochem. 1973, 38,
153. (c) Mølhøj, M.; Verma, R.; Reiter, W. D. Plant J. 2003, 35, 693.
(6) (a) Kindel, P. K.; Watson, R. R. Biochem. J. 1973, 133, 277.
(b) Guyett, P.; Glushka, J.; Gu, X.; Bar-Peled, M. Carbohydr. Res. 2009,
344, 1072.
(7) (a) Du, Y.; Linhardt, R. J. Tetrahedron 1998, 54, 9913.
(b) Uchiyama, T.; Vassilev, V. P.; Kajimoto, T.; Wong, W.; Huang,
H.; Lin, C.-c.; Wong, C.-H. J. Am. Chem. Soc. 1995, 117, 5395.
(c) Compain, P.; Martin, O. R. Bioorg. Med. Chem. 2001, 9, 3077.
(d) Zhao, Z.; Hong, L.; Liu, H.-w. J. Am. Chem. Soc. 2005, 127, 7692.
(8) Ewing, G. J.; Robins, M. J. Org. Lett. 1999, 1, 635.
deprotonation of the 2-OH group occurs during the conversion
of 2 to 7. Of the two mechanisms proposed for AXS, only the
cleavage of the C2−C3 bond of 4 in a retroaldol process
requires the ionization of the 2-OH group (4 → 5; Scheme 1,
pathway A). In contrast, the 1,2-shift mechanism (Scheme 1,
pathway B) requires deprotonation of the C3 hydroxyl group
(4 → 6). Taken together, the current data support the stepwise
retroaldol−aldol route as the catalytic mechanism of AXS.
In summary, we synthesized 8, a protected phosphonate
analogue of UDP-D-apiose (2), for use in mechanistic studies of
AXS. To overcome the intrinsic instability of 8 during chemical
synthesis, a coupled assay in which this substrate was generated
in situ using acetyl esterase was developed. The data show that
AXS can accept phosphonate in addition to the natural
phosphate substrates. More importantly, our results reveal that
AXS converts 8 into the corresponding UDP-D-xylose analogue
9, which is inconsistent with the assertion that there is no
mechanistic link between the biosyntheses of the two products
2 and 7 formed by the AXS-catalyzed reaction with UDP-GlcA
(3).5c Insight into the apparent inability of AXS to convert 7 to
2 was obtained from DFT calculations, which suggested that
this observation is unlikely to arise from the endergonicity of
the reaction. Instead, it was found that 7 can exist in two stable
chair conformations in aqueous solution, the more favorable of
which is likely to bind unproductively to AXS and inhibit its
activity. This product inhibition of the AXS-catalyzed reaction
by UDP-D-xylose may play a physiological role in the regulation
of cell-wall biogenesis in plants. Moreover, the isolation of 10
instead of 9 as the turnover product of 8 with AXS provides
strong evidence in support of the retroaldol−aldol mechanism
for this intriguing enzyme.
(9) Wittmann, V.; Wong, C.-H. J. Org. Chem. 1997, 62, 2144.
(10) Garneau, S.; Qiao, L.; Chen, L.; Walker, S.; Vederas, J. C. Bioorg.
Med. Chem. 2004, 12, 6473.
(11) (a) Baisch, G.; Ohrlein, R. Bioorg. Med. Chem. 1997, 5, 383.
(b) Waldmann, H.; Heuser, A. Bioorg. Med. Chem. 1994, 2, 477.
(12) Tris buffer (11.8 mM) was used in the assay even though it
coelutes with 10 under the HPLC conditions used (14 mM NH4OAc,
isocratic elution) because AXS showed the best activity in this buffer
(e.g., no AXS activity could be detected in phosphate buffer).
(13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.,
Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels,
A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford,
S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;
Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople,
J. A. Gaussian 98, revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.
ASSOCIATED CONTENT
* Supporting Information
Materials and methods and spectroscopic and structural data.
This material is available free of charge via the Internet at
■
S
AUTHOR INFORMATION
Corresponding Author
■
13949
dx.doi.org/10.1021/ja305322x | J. Am. Chem. Soc. 2012, 134, 13946−13949