3
5
6
a) F. M. Moghaddam, S. E. Ayati, S. H. Hosseini, A. Pourjavadi
RSC Adv. 2015, 5, 34502-34510. b) L. F. Bobadilla, T. Blasco, J. A.
Odriozola Phys Chem. Chem. Phys. 2013, 15, 16927-16934. c) X.
Zhang, A. Corma Angew. Chem. Int. Ed. 2008, 47, 4358-4361. d)
A. Berrichi, R. Bachir, M. Benabdallah, N. Choukchou-Braham
Tetrahedron Lett. 2015, 56, 1302-1306. and references therein.
a) X. Yang, M. Yang, B. Pang, M. Vara, and Y. Xia, Chem. Rev.,
2015, 115, 10410-10488. b) K. K. R. Datta, B. V. Reddy, K. Ariga,
A. Vinu, Angew. Chem. Int. Ed., 2010, 49, 5961-5965. c) F. M.
Moghaddam, S. E. Ayati, S. h. Hosseini, RSC Adv., 2015, 5,
34502-34510. d) Z. Li, C. Brouwer, C. He Chem. Rev. 2008, 108,
3239-3265.
S. Bhandari, S. Pramanik, R. Khandelia, A. Chattopadhyay, ACS
Appl. Mater. Interfaces, 2016, 8, 1600−1605.
a) J. Benson, C. M. Fung, J. S. Lloyd, D. Deganello, N. A. Smith, K.
S. Teng, Nanoscale Res. Lett., 2015, 10. b) W.-S. Kim, J.-H. Shin,
H.-K. Park, S. Choi, Sensors Actuat. B-Chem., 2016, 222, 1112-
1118.
butylamine, the reaction did not reach completion because the
enamine intermediate was too stable and the reaction
terminated at this step. Finally, a number of alkynes were
tested. Functionalized aromatic alkynes, namely 4-
ethynyltoluene and 4-ethynylanisole, gave the corresponding
products 4j and 4k in excellent yields. 3-Ethynylpyridine, an
alkyne containing a heterocycle, gave the corresponding
product 4l in good yield. In contrast, 1-decyne, an aliphatic
alkyne, gave the desired product in only 8% yield, and
trimethylsilylalkyne gave the desired product 4m in 60%
yield.
Next, we investigated the turnover number (TON) of
Au25(PET)18 in this reaction. The catalyst loading was reduced
in stages (entry 15) to determine its effects. The TON rose
gradually to a maximum of 1.4 × 104.
We investigated catalyst reuse. The catalyst was placed
in toluene under O2 at 60 C; it did not aggregate after 24 h
(Table 1, entry 9). After reaction, the solvent was evaporated
from the quenched mixture, and hexane (about 7 mL) was
added to form a solid. The recovered catalyst was filtered off
and redissolved in toluene for reuse. This material was used in
the A3 model reaction and gave 64% yield.
7
8
9
a) M. P. Antosh, D. D. Wijesinghe, S. Shrestha, R. Lanou, Y. H.
Huang, T. Hasselbacher, D. Fox, N. Neretti, S. Sun, N. Katenka, L.
N. Cooper, O. A. Andreev, Y. K. Reshetnyak, Proc. Natl. Acad. Sci.
USA, 2015, 112, 5372-5376. b) D. T. N. Anh, P. Singh, C. Shankar,
D. Mott, S. Maenosono, Appl. Phys. Lett., 2011, 99, 073107.
10 a) R. Dorel, A. M. Echavarren, Chem. Rev., 2015, 115, 9028-9072.
b) M. Joost, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed.,
2015, 54, 15022-15045. c) A. S. K. Hashmi, Angew. Chem. Int. Ed.,
2010, 49, 5232-5241. d) K. H. Nguyen, S. Tomasi, M. L. Roch, L.
Toupet, J. Renault, P. Uriac, N. Gouault, J. Org. Chem., 2013, 78,
7809-7815.
In conclusion, we have shown that thiolate-protected
AuNCs, Au25(PET)18, have high catalytic activity in the
production of propargylamine derivatives from aldehydes,
amines, and alkynes by a three-component coupling reaction.
Further studies to achieve a detailed understanding of the
reaction and its overall scope are currently underway in our
laboratory.
11 M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett., 1987,
405-408.
12 a) Y. Zhang, X. Cui, F. Shi, Y. Deng, Chem. Rev., 2012, 112, 2467-
2505. b) A. Corma, H. Garcia, Chem. Soc. Rev., 2008, 37, 2096-
2126. c) S. Yamazoe, K. Koyasu, T. Tsukuda, Acc. Chem. Res.,
2014, 47, 816-824. d) B. S. Takale, M. Bao, Y. Yamamoto, Org.
Biomol. Chem., 2014, 12, 2005-2027. e) C. D. Pina, E. Falletta, L.
Prati, M. Rossi, Chem. Soc. Rev., 2008, 37, 2077-2095.
13 a) J. Fang, B. Zhang, Q. Yao, Y. Yang, J. Xie, N. Yan, Coord.
Chem. Rev., 2016, 322, 1–29. b) W. Kurashige, Y. Niihori, S.
Sharma, Y. Negishi, Coord. Chem. Rev., 2016, 320-321, 238-250.
c) C. Liu, C. Yan, J. Lin, C. Yu, J. Huang, G. Li, J. Mater. Chem. A,
2015, 3, 20167-20173.
14 a) Y. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, Chem. Commun.,
2010, 46, 550-552. b) S. Xie, H. Tsunoyama, W. Kurashige, Y.
Negishi, T. Tsukuda, ACS Catal., 2012, 2, 1519-1523.
15 a) M. Zhu, E. Lanni, N. Garg, M. E. Bier, R. Jin, J. Am. Chem. Soc.,
2008, 130, 1138-1139. b) G. Li, C. Liu, Y. Lei, R. Jin, Chem.
Commun., 2012, 48, 12005-12007. c) Y. Zhu, H. Qian, B. A. Drake,
R. Jin, J. Am. Chem. Soc. 2010, 49, 1295-1298.
References and Notes
1
a) T. E. Müller, M. Beller Chem Rev. 1998, 98, 675-703. b) J. J.
Brunet, D. Neibecker in Catalytic Heterocyclization, eds by A.
Togni, H. Grützmacher, Wiley-VCH, New York, 2001, pp 91-141
and references therein.
For recent works reported in our group, see: a) Y. Obora, Y.
Shimizu, Y. Ishii Org. Lett. 2009, 11, 5058-5061. b) Y. Shimizu, Y.
Obora, Y. Ishii Org. Lett. 2010, 12, 1372-1374. c) Y. Mizuta, Y.
Obora, Y. Shimizu, Y. Ishii ChemCatChem 2012, 4, 187-191. d) Y.
Mizuta, K. Yasuda, Y. Obora J. Org. Chem. 2013, 78, 6332-6337.
e) Y. Obora, Y. Ishii Catalysis 2013, 3, 794-810.
a) M. Miura, M. Enna, K. Okuro, M. Nomura J. Org. Chem. 1995,
60, 4999-5004. b) L. Zani, C. Bolm Chem. Commun. 2006, 4263-
4275. c) A. A. Boulton, B. A. Davis, D. A. Durden, L. E. Dyck, A.
V. Juorio, X. M. Li, I. A. Paterson, P. H. Yu Drug Dev. Res. 1997,
42, 150-156. d) T. Naota, H. Takaya, S. I. Murahashi Chem. Rev.
1998, 98, 2599-2660.
2
3
4
16 a) G. Li, R. Jin, Acc. Chem. Res., 2013, 46, 1749-1758. b) V. A.
Solovyeva, K. B. Vu, Z. Merican, R. Sougrat, V. O. Rodionov,
ACS Comb. Sci., 2014, 16, 513−517. c) S. Yamazoe, S. takano, W.
Kurashige, T. Yokoyama, K. Nitta, Y. Negishi, T. Tsukuda Nat.
Commun. 2016, 7, 10414-10420.
a) C. Wei, Z, Li, C.-J. Li Synlett 2004, 1472-1483. b) V. A. Peshkov,
O. P. Pereshivko, E. V. Van der Eycken Chem Soc. Rev. 2012, 41,
3790-3807. c) C.-J. Li, C. Wei Chem Commun. 2002, 268-269. d)
X. Xu, X. Li, Org. Lett., 2009, 11, 1027-1029. e) L. Zani, S. Alesi,
P. G. Cozzi, C. Bolm, J. Org. Chem., 2006, 71, 1558-1562. f) W.-
W. Chen, R. V. Nguyen, C.-J. Li, Tetrahedron Lett., 2009, 50,
2895-2898. g) S. Samai, G. C. Nandi, M. S. Singh, Tetrahedron
Lett., 2010, 51, 5555-5558. h) E. P. Wendler, A. A. D. Santos,
Quim. Nova, 2013, 36, 1155-1159. i) J. Dulle, K. Thirunavukkarasu,
M. C. Mittelmeijer-Hazeleger, D. V. Andreeva, N. R. Shiju, G.
Rothenberg, Green Chem., 2013, 15, 1238-1243. j) L. Shi, Y.-Q.
Tu, M. Wang, F.-M. Zhang, C.-A. Fan, Org. Lett., 2004, 6, 1001-
1003. k) H. Feng, D. S. Ermolat’ev, G. Song, E. V. V. Eycken, J.
Org. Chem., 2011, 76, 7608-7613. l)J. B. Bariwal, D. S. Ermolat’ev,
E. V. V. Eycken, Chem. Eur. J., 2010, 16, 3281-3284. m) G.
Villaverde, A. Corma, M. Iglesias, F. Sánchez, ACS Catal., 2012, 2,
399-406. n) B. T. Elie, C. Levine, I. Ubarretxena-Belandia, A.
Varela-Ramírez, R. J. Aguilera, R. Ovalle, M. Contel, Eur. J. Inorg.
Chem., 2009, 3421-3430. o) V. K.-Y. Lo, K. K.-Y. Kung, M.-K.
Wong, C.-M. Che, J. Organomet. Chem., 2009, 694, 583-591. p) C.
Wei, C.-J. Li, J. Am. Chem. Soc., 2003, 125, 9584-9585.
17 a) M. Hyotanishi, Y. Isomura, H. Yamamoto, H. Kawasaki, Y.
Obora, Chem. Commun., 2011, 47, 5750-5752. b) Y. Isomura, T.
Narushima, H. Kawasaki, T. Yonezawa, Y. Obora, Chem.
Commun., 2012, 48, 3784-3786.
18 M. Zhu, W. T. Eckenho, T. Pintauer, R. Jin, J. Phys. Chem. C., 2008,
112, 14221-14224.
19 H. Yamamoto, H. Yano, H. Kouchi, Y. Obora, R. Arakawa, H.
Kawasaki, Nanoscale, 2012, 4, 4148–4154.
20
M. W. Heaven, A. Dass P. S. White, K. M. Holt, R. W. Murray, J.
Am. Chem. Soc. 2008, 130, 3754-3755.
21 Supporting Information is also available electronically on , the CSJ-