Page 3 of 5
ChemComm
a) B. Ringdahl, The Muscarinic Receptors, J. H. Brown, (ed.); 50
2
provide a means of generating and stabilizing active catalytic
AuNPs species during the described reaction.
Humana Press Inc., Clifton NJ, 1989; b) D. P. Zlotos, W. Bender and
U. Holzgrabe, Exp. Opin. Ther. Patents, 1999, 9, 1029.
3
4
W. Tatton, R. Chalmers-Redman and N. Tatton, J Neural Transm.,
2003, 110, 509.
L. Shi, Y.-Q. Tu, M. Wang, F.-M. Zhang and C.-A.Fan, Org. Lett. 55
2004, 6, 1001; b) M. J. Aliaga, D. J. Ramon and M. Yus, Org.
Biomol. Chem., 2010, 8, 43; c) M. L. Kantam, J. Yadav, S. Laha and
S. Jha, Synlett, 2009, 1791; c) L. Shi, Y.-Q. Tu, M. Wang, F.-M.
Zhang and C.-A. Fan, Org. Lett., 2004, 6, 1001; d) S. Nakamura, M.
Ohara, Y. Nakamura, N. Shibata and T. Toru, Chem. Eur. J. 2010, 60
16, 2360; e) T. Zeng, L. Yang, R. Hudson, G. Song, A. R. Moores
and C.-J. Li, Org. Lett., 2011, 13, 442; f) H. Sharghi, R. Khalifeh, F.
Moeini, M. H. Beyzavi, A. SalimiBeni and M. M. Doroodmand, J.
Iran. Chem. Soc., 2011, 8, 89; g) C. Wei and C.-J. Li, J. Am. Chem.
Figure 1. TEM image of Au@PMO-IL after the 3rd reaction cycle (Scale
5
Soc. 2002, 124, 5638.
65
bar: 100 nm).
5
6
S. Sakaguchi, T. Kubo and Y. Ishii, Angew. Chem.Int. Ed., 2001,
113, 2602.
K. Namitharan and K. Pitchumani, Eur. J. Org. Chem. 2010, 411.
It has been well-documented that cationic gold species in the
form of either AuI or AuIII exhibit higher catalytic performance
7. a) T. Zeng,W,-W. Chen, C. M. Cirtiu, A. Moores, G. Songand C.-J
Li, Green Chem., 2010, 12, 570; b) P. Li, Y. Zhang and L. Wang, 70
Chem. Eur. J. 2009, 15, 2045.
than metallic gold in the A3 coupling reactions. To assess whether 10
the cationic gold species are functioning as actual catalyst in our
system or not, we have prepared a reduced Au@PMO-IL sample
by treating the pristine catalyst with an excess of NaBH4. We
interestingly found that this catalyst system provided significantly
decreased conversion (<15%) as compared to untreated 15
Au@PMO-IL (88 %) when using in the A3 Coupling of p-
tolualdehyde with piperidine and phenyl acetylene under
essentially identical conditions. To gain more insight into the
exact gold oxidation state in our catalyst, we have studied both
the pristine Au@PMO-IL and the reduced catalyst by employing 20
X-ray photoelectron spectroscopy (XPS) analysis. XPS spectra of
the region corresponding to the binding energy range of 80-90 eV
for both materials were recorded, which include Au 4f5/2, and Au
4f7/2 peaks. The peaks located around 83.0/86.8 eV and 85.2/88.9
eV were assigned to the spin–orbit splitted components of the Au 25
4f level in the pure Au metalic form (84 eV for pure bulk metallic
Au) and cationic Au(III) species, respectively.19 This spectrum
clearly indicates the reduced samples (inactive catalyst) contained
only Au0 species, whereas the pristine catalyst is only comprising
ionic Au(III) species. In the basis of this observation it is very 30
likely that ionic gold species most probably in the form of Au(III)
is the active component in our active catalyst system, while we
could not exclude some catalysis by metallic gold.
8
9
Y. Zhang, P. Li, M. Wang and L. Wang, J. Org. Chem. 2009, 74,
4364.
a) D. J. Gorinl and F. Dean Toste, Nature, 2007, 446, 395; b) A.
Corma and H. Garcia, Chem. Soc. Rev., 2008, 37, 2096; c) A. Corma, 75
A. Leyva-Perez and M; J. Sabater, Chem. Rev., 2011, 111, 1657; d)
A. Stephen, K. Hashmi, Chem. Rev., 2007, 107, 3180.
10 Y. Zhang, X. Cui, F. Shi and Y. Deng, Chem. Rev., 2012, 112, 2467.
11 J. Gong, Chem. Rev., 2012, 112, 2987.
12 a) C. D. Pina, E. Falletta and M. Rossi, Chem. Soc. Rev., 2012, 41, 80
350; b) C. D. Pina, E. Falletta, L. Prati and M. Rossi, Chem. Soc.
Rev., 2008, 37, 2077; c) B. K. Min and C. M. Friend, Chem. Rev.,
2007, 107, 2709; d) B. Karimi and F. K. Esfahani, Chem. Commun.,
2009, 5555. e) B. Karimi and F. K. Esfahani, Adv. Synth. Catal.
2012, 354, 1319.
85
13 M. Ewana, M. Juliusa, S. Robertsa and J. C.Q. Fletcher, Gold Bull.,
2010,43, 298.
14 a) K. M. Parida, S. Singha, P.C. Sahoo, S. Sahu, J. Mol. Catal. A:
Chem. 2011, 342–343, 11; b) J. Han, Y. Liu and R. Guo, J. Am.
Chem. Soc. 2009, 131, 2060; c) C. González-Arellano, A. Corma, M. 90
Iglesias, F. Sánchez, J. Catal.2006, 238, 497–501; d) Y. Li, X. Fan, J.
Qi, J. Ji, S. Wang, G. Zhang and F. Zhang, Mat. Res. Bull. 2010, 45,
1413.
15 a)T. Lauterbach, M. Livendahl, A. Rosellon and P. Espinet, Org.
Lett., 2010, 12, 3006; b) S. K. Beaumont, G. Kakou, R. M. Lambert 95
and A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 12246; c) C.
Gonzalez-Arellano, A. Abad, A. Corma, H. Garcia, Angew. Chem.
Int. Ed. 2007, 46, 1536; d) V. K. Kanuru, G. Kyriakou, S. K.
Beaumont, A. C. Papageorgiou, D. J. Watson and R. M. Lambert, J.
Am. Chem. Soc. 2010, 132, 8081; e) P. Li, L. Wang, M. Wang and 100
Feng You, Eur.J. Org. Chem. 2008, 5946; f) A. Corma, R. Juarez, M.
Boronat, F. Sanchez, M. Iglesiasc and H. Garcıa, Chem. Commun.,
2011, 47, 1446.
The authors acknowledge IASBS Research Councils and Iranian
National Science Foundation (INSF) for support of this work. We 35
also appreciate Dr. H. Vali from McGill University for TEM
analysis
16 B. Karimi, and F. K. Esfahani, Chem. Commun., 2011, 47, 10452.
17 a) C. Wei and C.-J. Li, J. Am. Chem. Soc. 2003, 125, 9584; b) B. 105
Huang, X. Yao and C.-J. Li, Adv. Synth. Catal. 2006, 348, 1528; c)
V. K.-Y. Lo, Y. Liu, M.-K. Wong and C.-M. Che, Org. Lett., 2006, 8,
1529; d) L. L. Chng, J. Yang, Y. Wei and J. Y. Ying, Adv.
Synth.Catal. 2009, 351, 2887;e) B. T. Elie, C. Levine, I. Ubarretx-
Belandia, A. Varela-Ramírez, R. J. Aguilera, R. Ovalle and M. 110
Contel, Eur. J. Inorg. Chem. 2009, 3421; f) X. Zhang and A. Corma,
Angew. Chem. 2008, 120, 4430; g) K. K. R. Datta, B. V. S. Reddy, K.
Ariga and A. Vinu, Angew. Chem. Int. Ed. 2010, 49, 5961; h) Y.
Suzuki, S. Naoe, S. Oishi, N. Fujii, and H. Ohno. Org. Lett., 2012,
Notes and References
aDepartment of Chemistry, Institute for Advanced Studies in Basic
Sciences (IASBS), PO-Box 45195-1159, Gava zang, Zanjan 45137-6731, 40
Iran. Fax: +98-241-4214949; Tel: 241 415-3133; E-mail:
†
Electronic Supplementary Information (ESI) available: [The
experimental details for the preparation of catalyst, TEM images, FT-IR
14, 326.
115
spectrum for PMO-IL and Au@PMO-IL, XPS spectra, nitrogen 45
adsorption-desorption isotherms, 1H- and 13C-NMR for products]
See DOI: 10.1039/b000000x/
18 a) B. Karimi, D. Elhamifar, J. H. Clark, and A. J. Hunt, Chem. Eur. J.
2010, 16, 8047-8053; b) B. Karimi, D. Elhamifar, J. H. Clark and A.
J. Hunt. Org. Biomol. Chem. 2011, 9, 7420.
1
M. Syamala, Organic Preparations and Procedures International,
2009, 41, 1.
19. B. Koslowski, H. G. Boyen, C. Wilderotter, G. Kastle, P. Ziemann, R.
Wahrenberg and P. Oelhafen, Surf. Sci. 2001, 475, 1
120
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 |3