Table 3 Ligand effects on the couplings of 15 and 18, with stannane 16a
Notes and references
1 (a) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot
and V. Snieckus, Angew. Chem., Int. Ed., 2012, 51, 5062;
(b) K. C. Nicolaou and E. J. Sorensen, Classics in
Total Synthesis, VCH, Weinheim, 1996, pp. 591–631;
(c) J. H. Chang, H.-U. Kang, I.-H. Jung and C.-G. Cho, Org.
Lett., 2010, 12, 2016; (d) H. Fuwa, N. Kainuma, K. Tachibana and
M. Sasaki, J. Am. Chem. Soc., 2002, 124, 14983.
Entry Conditions
Yield (%) Z/Eb
2 (a) M. D. Shair, T. Y. Yoon, K. K. Mosny, T. C. Chou and
S. J. Danishefsky, J. Am. Chem. Soc., 1996, 118, 9509;
(b) K. C. Nicolaou and S. A. Snyder, Classics in Total Synthesis
II, Wiley-VCH, Weinheim, 2003, pp. 533–549; (c) N. T. Tam and
C.-G. Cho, Org. Lett., 2008, 10, 601.
3 (a) A. F. Littke, L. Schwarz and G. C. Fu, J. Am. Chem. Soc.,
2002, 124, 6343; (b) K. Menzel and G. C. Fu, J. Am. Chem. Soc.,
2003, 125, 3718; (c) S. R. Dubbaka and P. Vogel, J. Am. Chem.
Soc., 2003, 125, 15292; (d) C. Wolf and R. Lerebours, J. Org.
Chem., 2003, 68, 7551; (e) D.-H. Lee, A. Taher, W.-S. Ahn and
M.-J. Jin, Chem. Commun., 2010, 46, 478.
1 (15) Pd2(dba)3 + 8AsPh3, NMP, overnight12
72c
5/95
89/11
99/1
2 (15) Pd2(dba)3 + 4P(o-Tol)3, K2CO3, DMF, 8 h 76d,e
3 (18) Pd2(dba)3 + 4P(o-Tol)3, K2CO3, DMF, 16 h 86d,f
a
Catalyst (0.0025 mmol), 15 or 18 (0.25 mmol), 16 (0.30 mmol),
b
K2CO3 (0.50 mmol), solvent (1.0 mL), rt. The ratio of Z/E deter-
mined by GC/MS and 1H NMR on crude products. Isolated yield of
c
d
e
E-product. Isolated yield of Z-product. The reaction is performed
at 100 1C. f (Z)-Ethyl 3-iodobut-2-enoate 18 is the substrate in place of 15.
4 (a) X. Han, B. M. Stoltz and E. J. Corey, J. Am. Chem. Soc., 1999,
121, 7600; (b) C. Amatore, A. A. Bahsoun, A. Jutand, G. Meyer,
N. Ndedi and L. Ricard, J. Am. Chem. Soc., 2003, 125, 4212;
(c) P. Espinet and A. M. Echavarren, Angew. Chem., Int. Ed., 2004,
43, 4704; (d) R. Alvarez, O. N. Faza, C. S. Lopez and A. R. de
Lera, Org. Lett., 2006, 8, 35; (e) M. H. Perez-Temprano,
A. M. Gallego, J. A. Casares and P. Espinet, Organometallics,
2011, 30, 611.
5 (a) J. K. Stille and B. L. Groh, J. Am. Chem. Soc., 1987, 109, 813;
(b) J. K. Stille and J. H. Simpson, J. Am. Chem. Soc., 1987,
109, 2138; (c) G. Palmisano and M. Santagostino, Tetrahedron,
1993, 49, 2533; (d) A. Abarbri, J.-L. Parrain, J.-C. Cintrat and
A. Duchene, Synthesis, 1996, 82; (e) J. C. Conway, C. J. Urch,
P. Quayle and J. Xu, Synlett, 2006, 776.
6 A. Krasovskiy and B. H. Lipshutz, Org. Lett., 2011, 13, 3818.
7 G. P. Lu, K. R. Voigtritter, C. Cai and B. H. Lipshutz, J. Org.
Chem., 2012, 77, 3700.
8 F. Paul, J. Patt and J. F. Hartwig, Organometallics, 1995, 14, 3030.
9 S. Calimsiz and M. G. Organ, Chem. Commun., 2011, 47, 5181
Scheme 2 Potential pathways for isomerisation in Stille couplings.
A plausible mechanism for ligand-related isomerization
during Stille couplings of Z-alkenyl halides is illustrated in
Scheme 2. The loss of Z-olefinic geometry may follow from a
pathway involving either an anionic13 or cationic14 carbon as
part of a zwitterionic-metal carbene (e.g. 20) formed from an
initial (likely stereospecific) oxidative addition to 19. The Z/E
ratio of products could also arise via prolonged reaction times
in some cases, which may occur via reversible Pd–H elimina-
tion/re-addition.15 Heating of reaction mixtures (compare
Table 1, entry 14 with Table 2, entry 1) may contribute to
both isomerization of intermediate 19 and/or formation of,
and participation by, Pd–H, although Stille reactions in gen-
eral oftentimes require some degree of heating.
10 T. Hosoya, K. Sumi, H. Doi, M. Wakao and M. Suzuki, Org.
Biomol. Chem., 2006, 4, 410.
11 The reduced yields obtained in these couplings are due to compe-
titive formation of products of rearrangement; e.g., product I is
obtained in addition to product 13 in Table 2
12 V. Farina and G. P. Roth, Tetrahedron Lett., 1991, 32, 4243.
13 (a) J. M. Huggins and R. G. Bergman, J. Am. Chem. Soc., 1981,
103, 3002; (b) C. Amatore, S. Bensalem, S. Ghalem and A. Jutand,
J. Organometal. Chem., 2004, 689, 4642.
14 (a) T. Blackmore, M. I. Bruce and F. G. A. Stone, J. Chem. Soc.,
Dalton Trans., 1974, 106; (b) D. W. Hart and J. Schwartz,
J. Organometal. Chem., 1975, 87, C11; (c) D. Zargarian and
H. Alper, Organometallics, 1993, 12, 712.
15 (a) D. Gauthier, A. T. Lindhardt, E. P. K. Olsen, J. Overgaard and
T. Skrydstrup, J. Am. Chem. Soc., 2010, 132, 7998;
(b) M. E. Limmert, A. H. Roy and J. F. Hartwig, J. Org. Chem.,
2005, 70, 9364; (c) J.-P. Ebran, A. L. Hansen, T. M. Gøgsig and
T. Skrydstrup, J. Am. Chem. Soc., 2007, 129, 6931.
In summary, the stereochemical outcome of Stille couplings
involving Z-alkenyl halides and organostannanes has been
shown to be highly variable, contrary to expectations,
although fully consistent with related observations on Negishi6
and Suzuki–Miyaura7 couplings. In most cases, both
Pd2(dba)3/P(o-Tol)3 and Pd(MeCN)2Cl2 are the preferred
catalysts for maintenance of Z-stereochemistry, as well as
for their effectiveness in mediating highly efficient cross-
couplings in DMF.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 8661–8663 8663